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Abstract: A serine/threonine-protein kinase, recognized as Glycogen Synthase Kinase-3 (GSK-3),
is documented as a regulator of assorted cellular roles. GSK-3 activates by phosphorylation and
thereby controls the action of many physiological, messenger, and membrane-bound structures.
GSK-3α and GSK-3β are two vastly homologous forms of GSK-3 in mammals. Recent informa-
tion has recommended that GSK-3β is a constructive controller of cancer cell proliferation and a
promising key target against cancer cells. GSK-3 is overexpressed in various tumor types, includ-
ing ovarian tumors. In human breast carcinoma, it has been revealed that the overexpression of
GSK-3β was linked with breast cancer patients. The inhibition of GSK-3 or inhibitors of GSK-3 is
a promising therapeutic tactic to overcome breast and ovarian cancer. This article features an impor-
tant  aspect  of  inhibitors  of  Glycogen  Synthase  Kinase-3  as  a  new  lead  for  treating  breast  and
ovarian Cancer.
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1. INTRODUCTION
Glycogen synthase kinase-3 (GSK-3), an enzyme initial-

ly exposed to the world due to its  capability to inhibit  the
glycogen  synthase  by  phosphorylation,  is  primary  for  the
downregulation  of  glycogen  [1,  2].  GSK-3,  a  serine/thre-
onine-protein kinase, is documented as a regulator of assort-
ed  cellular  events  [3].  It  activates  by  phosphorylation  and
controls the action of many physiological,  messenger,  and
membrane-bound  structures  [4].  Moreover,  GSK-3α  and
GSK-3β  are  two  vastly  homologous  forms  of  GSK-3  in
mammals  [5,  6].  Current  researchers  have  advocated  that
GSK-3β inhibitors positively regulate cancer cell prolifera-
tion and have a versatile potential as a therapeutic target in
cancer. It is overexpressed in various tumor types, including
ovarian tumors [7]. In humans, breast neoplasm has been reg-
ulated by GSK-3β phosphorylation, enabling its decrease in
the breast cancer patients [8].

The inhibition of GSK-3 or inhibitors of GSK-3 is an en-
couraging therapeutic tactic to overcome breast and ovarian
cancer. This article features an important aspect of these in-
hibitors,  i.e.,  as a new lead for treating breast  and ovarian
Cancer.
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2.  GSK-3  INHIBITORS FOR THE TREATMENT OF
BREAST CANCER

2.1. Brazilein

Brazilein  is  a  phytoconstituent  obtained  from  a  plant
called Caesalpinia sappan, which showed biological actions
as heart stimulant [9], immunosuppressant [10], neuroprotec-
tive agent [11] as well as an anti-cancer agent [12]. Based
on these results,  it  could be thought that brazilein avoided
the elimination of ABCB1 carrier to conquer ABCB1-facili-
tated  multidrug-resistance  in  human  cancer  cells  [13].  On
this basis, the scientist investigated the anti-cancer response
of brazilein in humanoid breast cancer MCF-7 cell lines. It
was found that breast cancer is 28%, among all  cancerous
problems found in females and anticipated to be 15 percent
among the cancerous mortalities in females [14, 15].

The  introduction  of  innovative  cancer  therapy  has  re-
mained a vital technique for resolving breast cancer. C. sap-
pan Linn., the evergreen plant commonly spread in China,
has its utility in primary remedy to suppress inflammatory re-
sponses,  stimulate  blood  flow  and  cure  coagulation
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problems [16, 17]. Earlier experiments have shown that the
isolates in chloroform from C. sappan Linn. caused cell fatal-
ity of the cells taken from the head, i.e., HNSCC4, and from
the neck HNSCC31 [18]. Within this investigation, brazilein
isolated in C. sappan, a contemporary remedy consumed by
the people of China for decades, demonstrated potential anti-
cancerous action in MCF-7 cancerous colonies isolated from
the humanoid breast.

The involvement of the CD1 pathway caused cell prolif-
eration, innervated through GSK-3β as per the exhaustive ex-
aminations  carried  out  in  the  literature.  Moreover,  all  ad-
vancement  in  the  cell  cycle  is  specifically  regulated  via
CDK complexes. CD1 attaches to CDK4 or 6, serially add-
ing phosphate group in descendant target protein retinoblas-
toma (Rb), and resulting in the production of E2F protein of
the Rb /  E2F complex [19,  20].  ‘Discharging Rb from the
E2F transcriptional factor enabled the transcription of target
genes whose roles were important for the shift from G1 to S’
[21, 22]. In the aforementioned analysis, wherein reduced ex-
pression of CD1 was identified by brazilein treatment, pre-
vented the proliferation in cells across the G1/S interface as
a part of the cell cycle [15].

β-Catenin, the representative for the Wnt signaling path-
way is able to proliferate, differentiate, initiate apoptosis for
patient survival, thereby delaying mortality, [23, 24]. CD1
was attributed as a master regulator for the Wnt/β-Catenin
signaling  transduction  pathway  [25].  These  findings  re-
vealed  that  the  obstruction  of  the  β-Catenin  pathway  was
linked  with  the  downregulation  of  CD1 through brazilein.
GSK-3β, a serine/threonine-protein kinase primarily inhibit-
ed  by  the  Akt-governed  phosphorylation  of  serine  9,  con-
tributed to β-Catenin aggregation and triggered the genera-
tion of target genes comprising CD1 [26, 27]. The phospho-
rylation in the GSK-3β was another important feature in the
Akt  [28,  29].  The  phosphorylation  level  was  reduced  by
Brazilein in the Akt and GSK-3β (Ser 9), which stimulated
GSK-3β, ensuing deprivation of phosphorylated β-Catenin
through 26S proteasome. Conclusively, the studies recorded
the brazilein persuaded cell death and growth suppression of
cancerous  MCF-7  colonies  of  humanoid  breast  origin  by
downregulating CD1 protein and mRNA representation, fa-
cilitated via Akt/GSK-3β/β-Catenin path [15].

2.2. 9-ING-41

9-ING-41 is  an important  GSK-3 competitive ATP in-
hibitor molecule that inhibits both alpha and beta isoforms
but has a specific binding affinity to GSK-3β among the 320

associated enzymes of the family [30-32]. It has been estab-
lished that there is a link between GSK-3β and an incorrect
diagnostic approach when utilizing GSK-3β as a diagnostic
tool for breast cancer suffering patients [33]. Breast cancer
suffering  patients  show  GSK-3β  upregulation  reflecting  a
2.7  and  1.7-times  raised  danger  indistinct  reoccurrence  of
five- and ten-years post-resection, correspondingly [33]. Sci-
entists  discovered  the  aberrant  nuclear  accumulation  of
GSK-3β  in  5  humanoid  breast  cancerous  colonies  and  89
from 128 (70%) humanoid breast carcinomas, however, no
upregulation of GSK-3β was noticed during the clinical ex-
amination of benign breast tissue [34]. These consequences
advocate that the finding related to aberrant nuclear accre-
tion of GSK-3β during biopsy specimens has benefited the
pathological  finding  of  breast  malignancy,  and  strengthen
the involvement of GSK-3β in the sufferers of these malig-
nancies upon the treatment of GSK-3. For the accomplish-
ment  of  examinations  among  such  cancerous  cases  of
breasts, an investigation guided the pharmacological suppres-
sion of GSK-3 through 9-ING-41 [35], underlying the possi-
bility  of  cancerous  breast  colonies  in-vitro  [8];  coherent
consequences studied by Shin et al. showed that the demol-
ishment of GSK-3β manifestation considerably reduced the
breast cancer cell proliferation [36]. Compound ‘9-ING-41’
possesses a specific binding affinity to GSK-3 over 320corre-
lated enzymes by at least one order of magnitude, compris-
ing directly connected serine/threonine kinase enzymes [35].
In-vitro outcomes exhibited 9-ING-41 and effective intercep-
tion for breast cancerous cell enlargement [8]. The treatment
by 9-ING-41 boosted the anti-cancer consequence of irinote-
can (Camptothecin-11), used for cancerous breast colonies
in-vitro  [8].  Employing  breast  PDX  tumor  replicas  ascer-
tained  by  metastatic  pleural  expressions  and  found  in  pa-
tients with progressive, chemorefractory breast cancer estab-
lished that 9-ING-41 with anti-tumor results were exhibited
by  CPT-11,  controlling  the  regression  of  instituted  breast
PDX tumors in-vivo [8]. Unstated consequences favor con-
ceptualizations,  directing  that  GSK-3  reduces  chemoresis-
tance  in  breast  cancer,  and  affirming  9-ING-41  as  a  new
GSK-3  pursued  mediator  that  encourages  therapy  for  me-
tastatic breast cancer. During breast cancer reproductions, 9-
ING-41 anticancer pursuit establishes different in-vitro and
in-vivo models of cancers of the ovary, pancreas, and kidney
and  preliminary  drug  metabolism  and  pharmacokinetics
along with toxicological report favoring the expansion of the
research for scientific transformation [35, 37, 38].

3.  GSK-3  INHIBITORS FOR THE TREATMENT OF
OVARIAN CANCER

Glycogen synthase kinase-3β (GSK-3β) is a serine/threo-
nine kinase having diverse roles in several kinds of cancers
[26, 39, 40]. The literature review indicates that the “hyper-
-activation” of GSK-3β may have a role as an oncogene in
numerous types of human cancer, comprising of colon can-
cer [41], osteosarcoma [42], oral cancer [43], and malignant
melanoma  [44].  Also,  it  was  found  that  the  expression  of
GSK-3β is considerably advanced in ovarian carcinoma tis-
sues [45]. Overall, it may be said that GSK-3β plays a vital
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part in tumorigenesis, i.e., tumor generation and its develop-
ment.  Currently,  GSK-3β knockdown and GSK-3β inhibi-
tors have been revealed to impede the explosion of malig-
nant cells in pancreatic [46], prostatic [47], and colonic [48]
cancers, and in leukemia [49]. However, in ovarian cancer
the inhibitors of GSK-3β have not yet been much explored.

3.1. AZD1080

AZD1080  possesses  novelty,  potentiality,  selectivity,
orally bioactivity, and is known to be a permeable brain in-
hibitor of GSK3, inhibiting human GSK3 alpha and GSK3
beta with 6.9 nM and 31 nM Ki, correspondingly [50]. Chen
et al. in 2016, exposed the two cancer colonies of ovaries,
i.e., A2780 and OVCAR3 to AZD1080, for studying the pro-
cesses of amplification, state of the cycle as well as the regu-
lar movement of cells and migration of cells through the ex-
tracellular matrix. Phalloidin labeling was performed to pro-
duce lamellipodia. Cyclin-dependent kinase 2, cyclin-depen-
dent kinase 1, matrix metalloproteinase-9, and B-cell lym-
phoma through extra-large reverse transcription-polymerase
chain reaction and Western blot were conducted to test pre-
cise mRNA and protein expression levels of GSK-3β [51].
Most of the studies displayed that GSK-3β transcription or
anomalous kinase activity can upsurge the multiplication of
the cell and its feasibility and encourage malignant cell trans-
formation,  indicating oncogenesis [46,  52-55].  A group of
scientists described the GSK-3β inhibitors that can prevent
cell growth by modifying CDKs [50].

CDKs attach to cyclins, producing composites possess-
ing protein kinase activity, supporting cell cycle phase evolu-
tion,  starting  DNA  creation,  and  controlling  cellular  tran-
scription and other events [56, 57]. CDK1 activation stimu-
lates cells to reach the mitosis phase in prostate cancer while
fostering MMP2 and MMP9 expression in tumor invasion
and intensifying tumor growth [58]. Downregulated CDK2
expression amplified the proportion of cells in G1 in hepato-
cellular  malignancy  and  diminished  cyclin  D1  expression
[59].  Investigations  have  revealed  that  the  suppression  of
GSK-3β through the β-catenin signaling pathway directs the
reduction of cyclin D1, MMP9, and Bcl-xL [59-63].

In brief, GSK-3β involves a tumorigenesis role and the
promotion and growth of tumors by controlling the related
genes. Consequently, inhibitors targeted at the downregulat-
ing expression of GSK-3β can play a role in tumor correc-
tion. Therefore, an analysis was programmed to determine
the function of GSK-3β inhibitor, AZD1080, in the cell lines
of  ovarian  malignancy.  A  new  inhibitor  of  GSK-3β,
AZD1080, has been stated to play a key function in diminish-
ing  the  downstream,  unfavorable  results  of  the  signaling
pathway, triggered by numerous factors pertinent to the dis-

ease called Alzheimer's Disease [50]. Keeping these things
in mind, Chen and his co-workers, in 2016, tested the speci-
ficity of AZD1080 (at ten micromol concentration) versus di-
verse protein kinases, particularly GSK-3β, CDK2, CDK1.
The consequences indicated that AZD1080 has the potential
to  suppress  GSK-3β  in  the  strength  ranging  from  1  -  10
μmol/kg, presenting the possibility of acute oral dose-depen-
dent medication. They proposed that AZD1080 at doses of
0.125 - 16.0 μM could prevent the development of ovarian
cancer. Their consequences exhibited significant declines in
the viability of cancer cells at the dosage of 1.0 μM.

Also, AZD1080 significantly reduced the protein and ex-
pression of GSK-3β, CDK2 and CDK1, cyclin D1, MMP9,
and Bcl-xL mRNA. The tumor growth of A2780 and OV-
CAR3 was reduced together in a dose-dependent fashion, fol-
lowing the AZD1080 application. They additionally report-
ed that through CDK control, AZD1080 prevents the devel-
opment of filopodia and cell assault and metastasis, while re-
ducing MMP9 protein expression [51].

3.2. (2Z,3E)-6-bromoindirubin-3′-oxime

(2Z,3E)-6-bromoindirubin-3′-oxime  interfere  with  the
chemical pathway of ATP [64]. Previous studies described
that (2Z,3E)-6-bromoindirubin-3′-oxime possess anticancer-
ous response in breast and pancreas carcinogenic stem cells,
osteogenic sarcoma, along with melanoma [65-68]. The sci-
entist observed the inhibition of multiplication, infiltration,
relocation of Ovarian Cancerous cells, along with the inhibi-
tion  in  the  generation  of  cells  filopodium  by  the  drug
(2Z,3E)-6-bromoindirubin-3′-oxime  [69].  Vast  GSK-3β
studies  have  recommended  that  the  activation  of  GSK-3β
performs  a  significant  task  for  tumor  activity  and  growth,
however, stimulation is dependent on the characteristics of
the tumor. Ougolkov and his co-workers, in 2005, quantified
the expression of GSK-3β in cancerous cells of the pancreas
[70] and reported greater amounts of GSK-3β expression in
the nuclei, which was strongly associated with the specifici-
ty  of  cancerous  cells  of  the  pancreas.  Additional  in-vivo
studies reported the repression of GSK-3β action that point-
edly prevents tumor development in rodents [70].

The glioma cell-line apoptosis was inhibited by utilizing
GSK-3β  inhibitor,  LY2064827,  through  the  c-MYC  path
[40].  GSK-3β activation may be linked via  the dissemina-
tion  of  renal  tumors.  Correspondingly,  the  mitigation  of
GSK-3β by inhibiting the function of NF-κB can prevent the
dissemination of renal tumors [71]. In a subtype of OC cells
(SKOV3 cells), suppression of GSK-3β function can prevent
its proliferation, and accelerate GSK-3β activity, which con-
tributes  to  the  spread  of  GSK-3β  activity  [72].  Recently,
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Cao and his colleagues in 2006 have observed that GSK-3β
amplification  can  facilitate  the  proliferation  of  OC  cells
[73]. Moreover, Fu and his co-workers have shown that the
inhibition and aberrant induction of GSK-3β may lead to the
development of OC and have a beneficial effect as an inde-
pendent prognosis factor in patient populations with epithe-
lial ovarian cancer. These studies indicate that GSK-3β can
facilitate  the  spread/survival  of  different  types  of  tumor
cells.

The GSK-3β reduction may be the basis of OC therapy.
The current study revealed that the dissemination of A2780
and OVCAR3 cells could be decreased by varying ratios of
the GSK-3β inhibitor BIO. We also observed that BIO had a
concentration-dependent  decline  in  the  number  of  cells  in
the S/M phase of the cell cycle, a decrease in the number of
attacking  and  migrating  cells,  major  improvements  in  the
composition of the cytoskeleton, and a decrease in the capac-
ity  to  form  pseudopodia.  The  suppression  of  GSK-3β
through  the  β-catenin  signaling  pathway  and  inhibition  of
NF-£B expression contributes to the depletion of cyclin D1
and decreases p21 and MMP9 function [42, 61, 62, 74, 75].
This has been tested by GSK-3β siRNA cells,  which were
transfected in ovarian cancer cells, contributing to cyclin D1
and  MMP9  downregulation  and  P21  upregulation.  These
phenomena cause the arrest of the G1/S phases of the cell cy-
cle and reduce the overexpression of cancer cells.

The  forecast  of  few  GSK-3  inhibitors  by  Moelcular
Docking and ADMET discloses 6-bromoindirubin-3-oxime
as  a  promising  inhibitor  [76].  Scientists  exhibited  that  the
GSK-3β inhibitor, (2Z,3E)-6-bromoindirubin-3′-oxime, can
restrain the proliferation, invasion, and migration of ovarian
cancer  cells  and  decrease  the  development  of  filopodia.
Consequently, (2Z,3E)-6-bromoindirubin-3′-oxime might be
employed to get rid of ovarian cancer.

3.3. SB216763

SB216763 is a lightweight, effectively targeted GSK-3
blocker that is presently being exploited to test GSK-3 activi-
ty  [48,  77].  For  minimizing  oxidative  damage,  SB216763
was used to raise anti-oxidant levels of Nrf2 and heme oxy-
genase-1  (HO-1)  by  blocking  GSK-3  throughout  the  liver
and hippocampus [78]. For the reduction of the proliferation
of  cancer  cells,  the  suppression  of  GSK-3  activity  by
SB216763 has been displayed [48]. Also, research findings
have shown that the initiation of GSK-3 is connected to can-
cer invasion and therapeutic tolerance [7], representing that
GSK-3 suppression can trigger instead of antagonizing the
consequences of chemotherapeutic agents like the doxoru-
bicin.

Therefore, we hypothesize that SB216763's suppression
of GSK-3 activation abrogates DOX-induced ovarian toxic
effects  and  preserves  DOX's  anti-cancer  potential.  At  the
same time, further research on the consequences of GSK-3
suppression and more pathological  tests  upon its  safety of
SB216763 on ovaries are required. GSK-3 may also be an
enticing  goal  for  the  discovery  and  production  of  new
medicines to safeguard the selection of ovaries throughout
chemotherapy [79, 80].

4. AUTHORS’ INSIGHT ON THE TOPIC
This article covers the GSK-3 inhibitors used for the inhi-

bition of the Glycogen Synthase Kinase-3. These inhibitors
are categorized into two categories, one for the treatment of
breast cancer and another for ovarian cancer. The first cate-
gory includes the Brazilein and 9-ING-41, whereas the se-
cond  includes  AZD1080,  (2Z,3E)-6bromoindiru-
bin-3'-oxime and SB216763. Through the downregulation of
CD1  protein  and  mRNA  expression,  Brazilein  persuaded
cell destruction and theinhibition of cancerous MCF-7 cells,
which  have  been  regulated  by  the  Akt/GSK-3β/β-Catenin
cascade. 9-ING-41 suppressed the viability of breast cancer
cells by the inhibition of GSK-3. Moreover, AZD1080 in-
hibits ovarian cancer progression by reducing the viability
of cancer cells, along with the reduction in the protein and
the  expression  of  GSK-3β,  CDK2,  and  CDK1,  cyclin  D1,
MMP9, and Bcl-xL mRNA. The BIO inhibitor of GSK-3β
inhibits ovarian cancer cell differentiation, infiltration, and
spread and decreases the development of filopodia. By rais-
ing the amounts of the anti-oxidants Nrf2 and heme oxyge-
nase-1 by GSK-3 inhibition, SB216763 ameliorates oxida-
tive damage.

CONCLUSION
Conclusively, as inhibitors of GSK-3, Brazilein and 9-

ING-41 are promising therapeutic tactics to overcome breast
cancer,  while  AZD1080,  (2Z,3E)-6bromoindiru-
bin-3'-oxime, and SB216763 are promising therapeutic tac-
tics to overcome ovarian cancer, . This article features an im-
portant  aspect  of  the  inhibitors  of  Glycogen  Synthase  Ki-
nase-3,  i.e.,  as  a  new lead for  treating Breast  and Ovarian
Cancer.
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