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Abstract

Plant polysaccharides are a class of naturally occurring polymers present as storage carbo-
hydrates in plants consisting of glucose monomers in cereals, root vegetables, rhizomes,
seeds, fruits, etc. Recently, these plant derived materials have expanded their significance
in the drug delivery research because of non-toxicity, biodegradability, ready availability,
eco-friendliness and low extraction expenditure. During the past few decades, various plant
polysaccharides have already been used to design oral multiple-unit sustained-release drug
delivery systems like microparticles, beads, spheroids, etc. Even, these have been employed
as polymer-blends with other polymers for the development of oral multiple-unit sustained-
release systems with desired properties like drug encapsulation efficiency, swelling behav-
ior, mucoadhesivity, drug release, etc., through ionic-gelation technique. This technique is
simple and economical. In addition, ionotropically-gelled systems are non-toxic. The current
chapter contends with some helpful discussions on the already reported different multiple-
unit systems as sustained drug release carriers composed of various plant polysaccharides
and alginate (a water soluble natural anionic polysaccharide produced from the brown algae)
prepared through ionotropic-gelation technique. All these ionotropically-gelled multiple-
unit systems were found efficient to encapsulate various drugs in higher percentages and also
to sustain the drug release over the extended period with minimization of burst release and
quick degradation of matrices.

Keywords: Plant polysaccharides, sodium alginate, polymer-blends, ionotropic-gelation,
multiple-unit systems, sustained drug release

15.1 Introduction

During the last few decades, a variety of sustained release drug delivery dosage forms
for oral administration have been researched. These sustained drug releasing dosage
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forms for oral delivery offer several important advantages over conventional drug
delivery (immediate-release) dosage forms such as target-site specificity, minimiz-
ing fluctuations within the therapeutic range, minimum chances of dose dumping,
decreased dosing frequency, lower risk of side effects, enhanced bioavailability and
good patient compliance (Chein, 1990; Mandal et al, 2010). In recent years, drug
delivery researchers and scientists have placed a strong importance on the utilization
of various types of natural polymers to design and develop various oral drug delivery

forms for sustained drug release as various synthetic polymers employed for
this purpose are limited due to hazards associated with the organic solvents resulting
biocompatibility (Nayak & Pal, 2015a; Pal & Nayak, 2015a; Voicu ef al., 2016). Natural
polymers are extracted from natural sources. Therefore, these are readily available,
inexpensive and eco-friendly (Hasnain ef al, 2010; Thakur ef al., 2016). In addition,
the biodegradability of natural polymeric groups into the physiological metabolites
and their easy modifications compose these as prospective biomaterials in various
biomedical applications including drug delivery, tissue engineering, etc (Thakur
¢t al, 2013a.b,c.d, 2014a,b; Thakur & Thakur, 2014a,b, 2015; Thakur & Kessler, 2014;
Nayak & Pal, 2015a). -

Among single-unit and multiple-unit sustained drug release systems, multiple-unit
systemns have been proven beneficial over the single-unit systems as these are capable
of lowering both the intra- and inter-subject variability of the drug absorption with
the reduction of the possibility of dose dumping (Elmowafy et al, 2009; Malakar &
Nayak 2012). In addition, various types of multiple-unit systems for sustained drug
release have shown the capability to mix up with the gastrointestinal juices as well as
distribute over a wider area in the gastrointestinal tract. These lower the chances of
the malfunction of some multiple-units, with less chances of localized mucosal dam-
age and more predictable drug releasing kinetics (Nayak & Pal, 2015a; Pal & Nayak,
2015b). Recently, the formulation of various multiple-unit systems like nanoparticles,
microparticles, beads, spheroids, etc., using natural polymers through ionotropic-
gelation technique for oral sustained drug releasing delivery, has been widely investi-
gated (Desai, 2005; Bhowmik et al, 2006; Babu et al, 2010; Chakraborty et al., 2010;
Das et al, 2010; Assifoui et al, 2011; Jana et al, 2015a,b). Though the ionotropically-
gelled multiple-unit systems made of single natural ionic polymers have been investi-
gated as sustained drug releasing carrier matrices, blending of one ionic polymer with
another ionic or non-ionic polymer is a commonly adopted approach in the develop-
ment of multiple-unit sustained drug releasing carrier matrices for oral use (Ahuja
et al, 2010; Das et al, 2014; Nayak et al, 2014¢,d,e). This also improves some desired
functional properties such as enhanced drug encapsulation, controlled swellability,
reguired stability and more sustained drug release (Ahuja et al, 2010; Nayak et al.,
2013a). In addition, blending with mucoadhesive polymers offers improvement of
biomucoadhesion of multiple-unit systems for suitable gastroretention to improve the
site-specific drug delivery and bioavailability (Nayak et al., 2013b, 2014a,b; Nayak &
Pal, 2013a).

The current chapter deals with the discussions on already reported different multiple-
unit systems as sustained drug releasing carrier matrices composed of plant polysac-
charides and alginate (a naturally occurring anionic polymer obtained from brown
marine algae) prepared through ionotropic-gelation technique.



