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Multidrug resistance, a major obstacle
in hepatocellular carcinoma

treatment: challenges and future
perspectives

Tarun Sahu1, Arundhati Mehta2, Henu Kumar Verma3 and
L.V.K.S. Bhaskar4

1Department of Physiology, All India Institute of Medical Science, Raipur, India 2Department

of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India 3Department of

Immunopathology, Institute of Lungs Biology and Disease, Comprehensive Pneumology Center,

Munich, Germany 4Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India

Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the third leading
cause of cancer-related death and therefore a serious challenge to public health. Liver cirrhosis, especially
following chronic hepatitis B and hepatitis C infections, is the leading risk factor for HCC worldwide.
Global data suggest that metastatic or unresectable HCC has a poor prognosis, and early detection and che-
motherapy drugs provide marginal benefit and improve patients’ life expectancy. In addition, despite sig-
nificant progress in diagnostic and therapeutic epidemiological studies, it was noted that there was less
than 1 year of median survival after resection and that only approximately 5% of patients remained alive 3
years after resection. At 2 years, the recurrence rate could be as high as 50%. The complex pathogenesis
and the high metastatic nature of the disease constitute significant obstacles in treating HCC. Another hin-
drance is a higher rate of recurrence due to resistance to conventional chemotherapy resulting in a relapse.
Understanding the molecular factors associated with the development of resistance can help us to develop
new therapeutic strategies based on the molecular target and reduce the relapse rate. This chapter focuses
on the various existing therapeutic approaches and molecular mechanisms that underlie chemoresistance
in HCC. We also intend to provide a comprehensive summary of the different drug-induced chemoresis-
tance treatments for HCC and the updated targeted therapies for this carcinoma.

Keywords: Hepatocellular carcinoma; multidrug resistance; pathways; chemoresistance molecularly tar-
geted agents; therapeutics
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TIC tumor-initiating cells
TKI tyrosine kinase inhibitor
TME tumor microenvironment
TMZ temozolomide
TNF tumor necrosis factor
USP22 deubiquitin-specific protease 22
VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor receptor

Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. It is
heterogeneous in nature, affecting mainly hepatocytes under carcinogenic conditions such
as cirrhosis of the liver. GLOBOCAN 2018 data show that the incidence of HCC is widely
heterogeneous by region and is frequently seen in developing countries. It is the sixth
most common and fourth most deadly type of cancer [1]. The National Cancer Institute’s
Surveillance, Epidemiology, and End Results (SEER) program has reported that the overall
5-year survival rate of HCC remains very low at 20% [2].

The prevalence of HCC is linked with its most common etiological factor, which reflects
the geographic distribution of HCC. The highest incidence of HCC was observed in Asian
and African countries, owing to major causative factors, such as chronic alcohol abuse,
infection with the hepatitis B virus, and food contamination. A metaanalysis demonstrated
that tumor necrosis factor alpha (TNF-α) gene promoter polymorphisms increase the risk
of HCC in Asians [3]. On the other hand, chronic hepatitis C virus infection is the highest
risk factor in Western countries and Japan [4,5].

Patients with HCC may be treated with chemotherapy and surgery. Trends in the burden
of HCC have undergone significant changes worldwide, owing to the development of
advanced cancer screening, with broad guidelines for colonoscopy at the end of the 1990s [6].
In the current scenario, radiation therapy combined with immunotherapy and surgery is a
promising clinical solution for HCC. However, these remedies are not beneficial for some
patients because of resistance to chemotherapeutic agents and immunotherapy based on tyro-
sine kinase inhibitors (TKIs), which is still poorly understood [7]. Despite advances in early
detection, nearly 80% of HCC patients are diagnosed at a late stage of the disease, and they
are not suitable for surgical resection of the tumor. Intensive and acquired drug resistance
mechanisms are a major obstacle to developing effective cancer treatments in tumors.

Recently, the tumor microenvironment (TME) has attracted more attention in drug resistance
mechanisms regulated by microRNA in HCC [8,9]. Several reports suggest that TME and sig-
naling molecules are involved in different drug resistance processes in many cancers, including
HCC [10!13]. Furthermore, more than 100 genes have been identified as playing a role in inter-
linked drug resistance mechanisms. HCC development is a multistep process characterized by
genetic and epigenetic changes that trigger oncogenes, deregulate tumor suppressor genes, and
deregulate various cell signaling pathways. Therefore more emphasis should be placed on
understanding the molecular processes underlying chemoresistance, particularly multidrug
resistance (MDR), to identify new drug strategies and diagnostic biomarkers.

It is essential to adopt new approaches and screening methods to identify novel thera-
peutic targets to achieve improved treatment and survival of HCC patients. To achieve
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this, we examine the available data on the most recent pharmacological choices for HCC,
including the molecular signaling pathways that are associated with drug resistance in
HCC, and we discuss potential therapeutic strategies to provide novel insights and over-
come drug resistance.

Current therapy for hepatocellular carcinoma

Small, clustered tumors may be treatable by surgical procedures (resection and liver
transplantation). Regrettably, fewer than 20% of patients with HCC are appropriate for
surgical measures. Most patients are diagnosed with a progressive liver dysfunction that
prevents intensive surgery or with a recurring disease [14]. Local treatment is primarily
symptomatic and includes radiofrequency ablation (RFA), cryoablation, and transarterial
embolization, in which a hepatic artery block leads to tumor necrosis [15].

Chemotherapy

Among the clinical treatments for HCC, chemotherapy is the most commonly used
treatment for advanced HCC. It is used to treat patients who are deemed unsuitable for
the surgical procedure transarterial chemoembolization (TACE), such as those with extra-
hepatic malignancies, signs of vascular invasion, or resistance to TACE [16].

HCCs are known to be characteristically chemotherapy-resistant tumors as a result of
the overexpression of the multidrug-resistant gene MDR-1. HCC typically emerges in the
course of a malignant cirrhotic liver, and limited hepatocellular deposit sometimes pre-
vents or restricts systemic chemotherapy. Chemotherapy, the use of chemical agents to
cure cancer, is typically an adjuvant of metastatic disease where alternative treatment
choices are minimal. Though there are many clinical trials of most types of chemothera-
peutic agents that have been conducted, none of the approaches, either in single or in com-
bination therapy, have shown to be beneficial in HCC. Several trials of chemotherapy
agents have demonstrated that they have minimal HCC activity, as their response rates
are poor, and the duration of response is generally short [17,18].

Immunotherapy

Immune checkpoint receptors are upregulated in tumor cells and facilitate immune sur-
veillance of the host by the tumor. Immunotherapy is a favorable, innovative therapeutic
technique for HCC, especially as a second-line treatment to avoid recurrence. It is an entic-
ing alternative method that is focused on sensitivity, tumor cell specificity, the immune
system’s ability to regenerate itself, and the capacity to remove remaining tumors after tra-
ditional therapy. Outcomes from many clinical trials have demonstrated that immunother-
apy can enhance results in HCC patients [19].

Immune tolerance in HCC arbitrated by reduced costimulation leads to immune sup-
pression. Numerous immunotherapy agents, such as anticytotoxic T lymphocyte antigen 4
antibody and antiprogrammed death 1 (PD-1) monotherapy/programmed death ligand 1
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antibody have been employed in the treatment of HCC. But success rates have been lim-
ited. Another rapidly evolving immunotherapy method was is antigen receptor (CAR)
engineered T cell therapy, which had previously shown confirmed efficiency against
hematological malignancies. CAR T cell therapy implements the anticancer activity of
“domesticated” T cells that have been engineered to produce cancer-specific antigen-tar-
geted receptors to treat malignant tumors. Randomized clinical trials showed increases in
recurrence time and recurrence-free survival with IL-2 and anti-CD3 triggered peripheral
blood mononuclear cells in patients with HCC undergoing surgical resection [20,21]. In
patients with chronic HCC, recombinant interferon alpha (IFN-α) is advantageous com-
pared to doxorubicin in terms of survival, tumor response, and toxicity [22].

Radiotherapy

Radiotherapy was previously not considered a feasible choice as a harmless treatment
option for HCC because the liver’s cancerous and noncancerous tissues are radiosensitive.
With technological advancements and the introduction of stereotactic body radiation ther-
apy (SBRT) and external beam radiation therapy (EBRT), cancerous tissues can be treated
with high accuracy and intensity while saving adjacent tissue by administering high-dose
radiation to small treatment areas. A wide variety of retrospective and prospective studies
recently showed that SBRT has been used for early-stage inoperable HCC using a variable
dose of approximately 600 cGy. Post SBRT liver explant showed a complete response rate
of 27%, a partial response rate of 54%, and a stable response rate of 18% [23]. SBRT was
compared with RFA in a retrospective study of HCC patients, in which SBRT provides 2
years longer survival than RFA in terms of local progression. In addition, the overall sur-
vival rate for SBRT for 2 years was 46% compared to RFA, which had a 53% overall sur-
vival rate [24]. Another promising category of radiation therapy is charged particle
therapy, including proton beam therapy (PBT) or carbon ion therapy, which has possible
dose benefits over traditional EBRT therapies. PBT utilizes protons instead of photons and
allows correct energy deposition inside tumors and safe dosage elevation due to lack of an
exit dose. A phase II trial of PBT in patients with HCC attained a controlled rate of 94.8%
and a survival rate of 63.2% 2 years after treatment initiation [25]. The latest PBT review
for HCC documented 3 years of local control rates ranging from 70% to 79% and 3 years
of overall survival rates ranging from 45% to 65% [26]. Qi et al. did a systematic review
comparing charged particles with photon therapy. In patients with HCC, they found that
survival rates for charged particle therapy are higher than those for conventional radiation
therapy but similar those for to SBRT [27]. However, charged particle therapy offers some
possible benefits over traditional EBRT approaches, but further study is needed.

Surgical therapy

At present, surgical resection is the only long-lasting treatment option available for
patients with HCC. Still, it is limited to patients who do not have any issues related to the
liver. Therefore it is an option only for a tiny proportion of patients, perhaps fewer than
18%, because 85%!90% of HCC patients have chronic liver disease or liver cirrhosis.
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For patients with cirrhosis, surgical abscission raises the risk of liver decompensation
[28,29]. Under the recommendations of the European Association for the Study of the
Liver and the American Association for the Study of Liver Diseases, portal hypertension is
considered a relative contraindication for surgical abscission in cirrhotic patients. The
occurrence of portal hypertension, based on a gradient of hepatic venous pressure (HVPG)
of 10 mmHg or more, was reported to be the best indicator of liver decompensation after
surgery and poor long-term consequences in Child-Pugh class A cirrhotic patients who
undergo hepatic abscission [30,31]. Therefore liver function and the size of a tumor should
be assessed before surgery to prevent liver dysfunction after abscission. Typically, HCC is
a fatal disease that could require an immediate liver transplant. After adequate HCC resec-
tion, recurrence of tumors in the cirrhotic liver is a significant clinical concern in around
70% of patients over 5 years of age. The recurrence rate corresponds to an occurrence of
microscopic vascular invasion, which is present without any indication of macroscopic
vascular invasion in more than 30% of HCC patients [19,32].

Molecular drug targets

Study of HCC’s molecular pathology has revealed various molecules that crucial to the
onset and persistence of this disease in recent decades. Many molecular pathways are
involved in the development of HCC, including epidermal growth factor (EGF), vascular
endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), insulin-like
growth factor (IGF), c-Met, mammalian target of rapamycin (mTOR), and Wnt/beta-cate-
nin pathways. In this chapter we discuss the current status of various drug targets that
have been identified for targeting the family of these signaling pathways that are critical
for the development of HCC [33,34].

Antiangiogenic factors

HCC is a vascular tumor that depends on angiogenesis for its development. Fibroblast
growth factors (FGFs), VEGFs, and platelet-derived growth factors (PDGFs) are essential
angiogenic factors that are implicated in HCC pathogenesis. Overexpression of VEGF and
VEGF receptors (VEGFRs) has been observed both in vitro and in HCC patients’ serum.
Therefore for the production of antiangiogenic cancer drugs, the primary targets are the
pathways associated with VEGF and VEGFRs and PDGF and PDGF receptors (PDGFRs)
[21,35!38]. To date, sorafenib is the only drug that has been used successfully in treating
patients suffering from HCC [39].

Sorafenib

Sorafenib is a multikinase inhibitor that is taken orally. It confers its activity by interfer-
ing with some tyrosine kinase receptors on cancer cells and vasculature cells plus the
VEGF R1!R3, the PDGFRs, and the c-KIT RET, and FMS-like tyrosine kinase 3 (FLT3).
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Sorafenib is oral biaryl urea that induces apoptosis and autophagy in human hepatocarci-
noma cells [40]. Sorafenib also inhibits cell proliferation via the Raf/MAPK/ERK signaling
pathway [41]. Its primary action mechanism is that it prevents adenosine triphosphate
(ATP) from binding to the catalytic sites of these kinases.

Abou-Alfa et al. reported a median overall survival (OS) of 9.2 months in a phase II
clinical study of sorafenib in 137 patients with advanced HCC [42], which was quite satis-
factory in comparison to other single-arm studies that evaluated the use of combination
therapy for HCC patients, with a median OS of 8.9 months and 7.3 months, respectively
[18,43].

Improved overall survival with sorafenib was reported in two large phases III random-
ized, placebo-controlled trials performed in Western countries (SHARP) [44] and Asia-
Pacific [45]. In the SHARP trial, the OS was 10.7 (7.9 months for the placebo group), while
in the Asia-Pacific trial, the OS was 6.5 months (4.2 months for the placebo group).
Although the role of sorafenib in moderate HCC is less well understood, these two phase
III studies validated sorafenib as the preferred first-line systemic therapy for advanced
HCC. Furthermore, a limited number of patients in Child-Pugh class B were involved in
these studies, so it is impossible to determine the effectiveness and safety of sorafenib in
this patient group. Therefore the need for rapid production of newer and more efficient
agents for advanced HCC remains crucial and unfulfilled.

Following the establishment of sorafenib as the standard first-line therapeutic regimen
for advanced HCC, a significant number of phase III studies comparing sorafenib to vari-
ous other molecular-targeted regimens were conducted, either alone or in combination, to
determine whether novel selective molecular therapies would improve sorafenib’s antitu-
mor efficiency. For example, in patients with advanced HCC, linifanib was compared with
sorafenib. Linifanib favored progression time and overall response rate, while sorafenib
favored safety results, resulting in similar OS (9.1 and 9.8 months, respectively) [46].
Another phase III SEARCH trial showed less advantage with the addition of erlotinib over
sorafenib to sorafenib alone with OS of 9.5 months with combined sorafenib and erlotinib
and 8.5 months with sorafenib alone [47]. Sorafenib is also used in combination with other
molecular targeted drugs such as sunitinib and brivanib [48,49]. Sorafenib plus doxorubi-
cin (a mixture of molecularly targeted drugs and cytotoxic drugs) [50] has been used as
first-line therapy for patients with advanced HCC. So far, none of these agents has shown
a significant benefit over sorafenib. However, a recent phase III study of lenvatinib versus
sorafenib showed that lenvatinib was not inferior to sorafenib in treating advanced HCC
patients [51].

Bevacizumab

Bevacizumab is a humanized monoclonal IgG antibody that inhibits angiogenesis by
binding and neutralizing the VEGF-A receptor. It also works in conjunction with chemo-
therapy and selective agents such as erlotinib to treat advanced breast cancer and non-
squamous lung and colorectal cancers. Siegel et al. phase II trial showed that bevacizumab
is quite effective alone, showing a median OS of 12.4 months in patients of HCC [52]. Zhu
et al. reported that bevacizumab, when used in combination with gemcitabine and
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oxaliplatin, gives rise to a 20% overall response rate and OS of 9.6 months [53]. A Phase II
study was also conducted to test the combination of capecitabine and oxaliplatin, with a
median OS of 10.3 months reported [54]. Administering these drugs has also resulted in
significant treatment-related toxicity, resulting in leukopenia, transaminitis, hypertension,
and fatigue. Previous trials have shown that bevacizumab is moderately effective in HCC,
but further studies are needed to explain its effectiveness and safety.

Sunitinib

Sunitinib is an oxindole-based multitargeted kinase inhibitor that inhibits specific receptor
tyrosine kinases (RTKs), such as VEGFRs (1, 2, and 3), PDGFRs (α and β), c-kit, FLT3, and a
variety of other associated tyrosine kinases with antitumor and antiangiogenic activity.
Sunitib has been approved by the U.S. Food and Drug Administration (FDA) for the treat-
ment of gastrointestinal stromal tumors and kidney cancer. In a phase II trial of sunitinib,
patients received the drug 37.5 mg/day for 4 weeks followed by 2 weeks of rest per cycle;
the median progression-free survival (PFS) was 3.9 months, and the time to progression was
4.1 months. The median PFS was 3.7 months and the median OS was 8 months when
patients were treated with repeated cycles of oral sunitinib (50 mg/day for 4 weeks followed
by 2 weeks off treatment) in the second phase II trial. However, these trials were terminated
prematurely, owing to low response rates, inability to meet the target endpoint, and a high
number of grade 3 and 4 adverse effects, such as leukopenia, neutropenia, thrombocytope-
nia, hand-foot syndrome, anemia, aminotransferase elevation, and fatigue [55,56]. A phase
III trial comparing sorafenib to sunitinib was prematurely terminated because of a higher
recurrence of negative effects in the sunitinib arm than in the sorafenib arm [48].

Pazopanib

Pazopanib is an angiogenesis inhibitor that is synthesized from indazolyl-pyrimidines.
The FDA recently approved pazopanib for the treatment of renal cancer. This is a newer
multitargeted TKI that inhibits several VEGFRs (1, 2, and 3), PDGFRs (α and β), and c-Kit.
Phase I clinical trials have demonstrated that while pazopanib’s toxicity level is appropri-
ate, there could be an opportunity for advanced HCC therapy [17,57].

Brivanib

Brivanib is a selective inhibitor of VEGFR and FGFR tyrosine kinases. Phase II open-
label first-line and second-line treatment trials in patients with unresectable, locally
advanced, or metastatic HCC demonstrated a median average survival of 10 and 9.5
months, respectively [58,59]. Brivanib did not show any benefits in terms of OS when
given orally to patients who had previously undergone sorafenib therapy. Treatment-
related adverse effects were induced in 23% of patients [60]. Another phase III study
found that there were no statistically significant results in first-line therapy in HCC when
brivanib was compared to sorafenib. The median OS in the brivanib arm was 9.5 months
versus 9.9 months in the sorafenib arm [49].
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Axitinib

Axitinib is a derivative of the small molecule indazole. It is an orally administered
multi-TKI that inhibits VEGFRs 1, 2, and 3. Axitinib has demonstrated beneficial effects on
kidney cell cancer and thyroid cancer. Phase II and III clinical trials are planned to test
this drug’s efficacy for use in treating HCC [61,62].

Linifanib

Linifanib is also known as ABT-869. It is an inhibitor of VEGF and PDGF RTKs, and it
competes with ATP for binding to the receptors. A phase II clinical trial for advanced
HCC has demonstrated that linifanib is clinically successful with an appropriate safety
profile, and median OS was 9.7 months for nonresectable HCC [63]. In a phase III trial of
linifanib versus sorafenib, linifanib demonstrated high overall survival and a slightly bet-
ter progression period than the sorafenib arm; however, the predefined margin of nonin-
feriority overall survival was not reached [46].

Foretinib

Foretinib is a new TKI receptor inhibitor targeted at VEGFR 2 and c-Met. Huynh et al.
performed a study using human HCC mouse models to test the antitumor and antiangio-
genic actions of foretinib and found that foretinib exhibited significant antitumor efficacy
in patient-derived HCC xenograft models. This research offers a strong basis for clinical
investigation in patients with advanced HCC [64].

Dovitinib

Dovitinib is an inhibitor of RTKs targeting VEGFRs 1 and 2; FGFR 1, 2, and 3; and PDGFR
β. Several phase I and II trials have been conducted to evaluate this medication’s pharmacoki-
netics, pharmacodynamics, and safety profile. According to a study, dovitinib preferentially
prevents HCC growth and metastasis via an antiangiogenic mechanism that does not directly
target HCC cells [23]. This compound has been reported to decrease angiogenesis and cell
proliferation, inducing tumor cell apoptosis in xenograft models of human HCC [65].

Anti-epidermal growth factor receptor inhibitors

Ramucirumab

Ramucirumab is an injectable monclonal antibody that precisely and potently inhibits
VEGFR 2. It interacts with the VEGF-binding domain of VEGFR 2, blocking
VEGF!VEGFR 2 interaction. Although ramucirumab did not achieve its primary endpoint
for second-line therapy in the REACH trial [66], the PFS and OS were extended in the sub-
category of patients with baseline serum alpha-fetoprotein levels of 400 ng/mL or more
[67!70]. This was confirmed later in the REACH-2 trial, which led to the endorsement of
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ramucirumab as second-line therapy for advanced HCC [71]. REACH-2 is the first promis-
ing phase III trial in HCC patients conducted in a biomarker-selected patient cohort. More
recent studies have shown that AFP-enriched HCCs have shown substantial activation of
VEGF, which indicates the underlying mechanism of action and reinforces the possible
importance of biomarker-driven clinical trials [25].

Erlotinib

Erlotinib is an oral TKI-associated with the EGF receptor (EGFR, HER-1). Erlotinib inhi-
bits EGF-dependent tumor cell growth at submicromolar concentrations and prevents the
cell cycle’s progression in the G1 stage. Phase II analysis of standard erlotinib in HCC
patients showed that resistance to this medication was strong, but it had a slight advan-
tage in regulating HCC, which was seen to extend overall survival for 13 months
discretely [72]. Zhu et al. conducted a phase III clinical trial (SEARCH trial) to compare
the clinical outcomes of sorafenib versus erlotinib or placebo in patients with advanced
HCC. The results showed that the use of erlotinib compared to sorafenib did not increase
survival in patients with advanced HCC [47].

Lapatinib

Lapatinib ditosylate, a quinazoline family member with a 4-anilinoquinazoline core, is a
reversible, small molecule tyrosine kinase dual inhibitor of EGFR and HER2. Lapatinib
works in the extracellular environment by competing with ATP for the ATP-binding
domain of the TKIs’ cytoplasmic tail. Its primary mechanism of action is the inhibition of
tyrosine kinase phosphorylation, which reduces and replaces signal transduction along
with the PI3K/Akt and Ras/Raf/MAPK pathways. Studies have shown that this drug is
well tolerated at doses of 500!1600 mg daily and has antitumor activity in extensively pre-
treated patients who have many solid tumors [73]. The FDA has approved lapatinib for
metastatic BC [74]. A phase II analysis of lapatinib in advanced HCC patients found that
the drug was well tolerated but had modest antitumor efficacy based on a lack of objective
response and 12.6-month OS [75]. Another phase II study showed a lower median OS of
6.2 months. This lower survival rate could be attributed to the small sample size [76].

Mammalian target of rapamycin pathway inhibitor

The EGF and IGF signaling pathways stimulate intracellular downstream proteins such
as phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mTOR. These are the
most critical intracellular pathways, regulating cell growth, motility, survival, metabolism,
and angiogenesis. Both EGF and IGF receptors are upregulated in HCC, leading to PI3K/
AKT/mTOR pathway activation, which causes tumor growth and susceptibility to antican-
cer therapy [77]. The blocking of the mTOR pathway thus exerts anticancer, antiangio-
genic, and immunosuppressive effects. Preclinical results showed that mTOR inhibitors
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have been beneficial for cell and tumor suppression growth in cell lines and tumor models
of HCC [78].

Rapamycin

Rapamycin is a natural antibiotic that tends to work as an mTOR inhibitor. Three rapamy-
cin analogs were recently developed and found to have excellent pharmacokinetic and biologi-
cal properties. They hinder the development of cell lines originating in vitro from many forms
of tumors and in vivo models. Sirolimus, also known as rapamycin, is a macrolide substance
with immunosuppressive activity in humans and is particularly useful in preventing the rejec-
tion of kidney transplants. It is an mTOR inhibitor with immunosuppressive properties and
has been used in the posttransplantation setting. Sirolimus can also suppress the rejection of
liver transplantation in patients and prevent HCC recurrence [79]. Rizell et al. conducted a
small pilot study to investigate the effects of the mTOR inhibitor sirolimus in hepatocellular
and cholangiocellular cancer patients. They found that the treatment of HCC and CCC with
sirolimus can induce temporary stable disease. The authors suggest that sirolimus could be a
potential drug for this treatment, but more clinical trials on biological effects are needed [80].

Everolimus

Everolimus acts as a PI3K/Akt/mTOR inhibitor, which regulates cell development, pro-
liferation, and angiogenesis. Phase I and II trials of everolimus in patients with
unresectable or metastatic HCC demonstrated moderate antitumor activity with a median
OS of 8.4 months and a disease control rate of 44%. The authors concluded that in patients
with advanced HCC, everolimus was well tolerated, and 10 mg/day was specified as the
phase II dosage [81]. In a phase III study of everolimus versus placebo in HCC patients in
Child-Pugh class A (in whom the disease worsened before or after sorafenib therapy or
who were intolerant to sorafenib), everolimus had no beneficial effect on overall survival
or time of development [22] (Table 15.1).

Pathway associated with multidrug resistance

Resistance to chemotherapy in cancer patients is a major concern. Clinical drug resis-
tance may be complex and multifaceted. At present, MDR is a significant clinical chal-
lenge, leading to poor prognosis for some patients despite vital advances in treatment.
MDR is a cross-resistance event for various structurally and functionally disseminated
agents in cancer cells that are exposed to cancer drugs [88,89]. Previous research has
shown a wide range of pathways involved in the regulation of MDR. The ATP-binding
cassette (ABCB1, ABCC1, ABCG2) is the most identifiable gene associated with MDR
[89!91]. Such resistance processes can be categorized in various waved forms. The most
distinguished ones have improved viability or cell death, drug target changes, transformed
DNA repairs, and cellular drug transport modifications [92,93] (Fig. 15.1).
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TABLE 15.1 List of drugs with their mechanism, targets, and limitations.

Type Drug Subtype Mechanism Target
Pathways
inhibited Limitations References

Sorafenib Multikinase
inhibitor

Inhibits tumor
growth by
preventing the
activation of the
tyrosine kinase
receptor

Raf, VEGFR
1, 2, 3,
PDGFRs, flt-3,
FGFR-1, RET,
c-KIT, FMS

Ras (Raf-1
(C-Raf) and
B-Raf)
/MAPK/
ERK
signaling
pathway

Hypertension, diarrhea,
proteinuria, skin-related
toxicities

[47,50!52,55,56]

Bevacizumab Moab Blocks VEGF
binding to its
receptor

VEGFR
members

VEGFR
Pathway

Low rate of response,
gastrointestinal
bleeding, including
variceal bleeding

[52!54]

Sunitinib Multikinase
inhibitor

Inhibits tumor
growth by
preventing the
activation of the
tyrosine kinase
receptor

VEGFR1,2&3,
P.D.G.F.R.s, c-
KIT, RET, and
FLT3

Tyrosine
kinase

Low response rates,
failure to meet the
primary endpoint
neutropenia,
thrombocytopenia, hand-
foot syndrome, anemia,
the elevation of
aminotransferases, and
fatigue

[55,56]

Pazopanib VEGFR inhibitor Blocks VEGF
binding to its
receptor

VEGFR
members,
PDGFR α,
PDGFR β,
c-Kit

VEGFR
Pathway

Hypertension, dizziness,
nausea and vomiting

[17,57]

Brivanib FGFR and VEGFR
tyrosine kinase
inhibitor

Inhibits tumor
growth by
preventing the
activation of FGFR
and VEGFR
tyrosine kinase
receptor

VEGFR,
PDGFR

VEGF and
FGF
signaling
pathway

Did not show any benefits
in terms of OS

[60]



Axitinib VEGF, PDGFR
inhibitor

Blocks VEGF and
PDGF binding to
its receptor

VEGFR
members,
PDGFR α,
PDGFR β, c-
Kit

VEGF
signaling
pathway

Diarrhea,
hypertension,
fatigue

[61,62]

Antiangiogenic
factor

Linifanib ATP-competitive
inhibitor of all
VEGF and
PDGF receptor
tyrosine kinases

Blocks VEGF and
PDGF binding to
its receptor

VEGF VEGF and
PDGF
signaling
pathway

Overall survival was not
reached

[46]

TSU-68 VEGF, PDGFR
inhibitor

Blocks VEGF and
PDGF binding to
its receptor

VEGFR 2,
PDGFR α,
PDGFR β, c-
Kit, Flk-1

VEGF
signaling
pathway

— [82]

Foretinib VEGF inhibitors Blocks VEGF
binding to its
receptor

VEGFR 2, c-
Met

VEGF
signaling
pathway

— [64]

Dovitinib VEGF, PDGFR
inhibitor

Blocks VEGF and
PDGF binding to
its receptor

VEGFR
members,
PDGFR β
FGFR
members
Flt-3
c-Kit

VEGF and
PDGF
signaling
pathway

— [23,65]

Anti-EGFR
Inhibitor

Ramucirumab Humanized anti-
VEGFR-2 MoAB

Binds specifically
to VEGFR 2, thus
blocking binding
of its ligands

VEGFR VEGF
pathway

Did not achieve its
primary endpoint for
second-line therapy in the
REACH trial

[66!69]

Erlotinib Small molecule
inhibitors

Targets EGFR EGFR/HER-1 EGF
pathway

Small benefit in regulating
HCC

[72]

Lapatinib Small molecule
inhibitors

Targets EGFR EGFR/HER-
1/HER-2/
NEU

EGF
pathway

Limited antitumor activity [75]

(Continued)



TABLE 15.1 (Continued)

Type Drug Subtype Mechanism Target
Pathways
inhibited Limitations References

Gefitinib Adenosine
triphosphate
mimetic
anilinoquinazoline
EGFR-TKI

Targets EGFR EGFR/HER-1 EGF
pathway

— [83!85]

Cetuximab Chimeric (human
and mouse)
monoclonal
antibody against
EGFR

Targets EGFR EGFR/HER-1 EGF
pathway

Shows moderate activity [86,87]

mTOR
pathway
Inhibitor

Rapamycin mTORC1 blocker Targets mTOR
pathway

PI3K/Akt/
mTOR

PI3K/Akt/
mTOR
pathway

— [79,80]

Everolimus Small molecule
inhibitors

Targets mTOR
pathway

PI3K/Akt/
mTOR

PI3K/Akt/
mTOR
pathway

Little positive impact on
overall survival

[22]



DNA repair pathway

Humans are frequently subjected to several physical and chemical factors that can damage
DNA, such as reactive oxygen species (ROS), reactive nitrogen species, ionizing radiation,
ultraviolet light, and a wide range of ecological, nutritional, and polluting chemicals. The
specificity and viability of the cell depend on the genome’s integrity, and the cells have many
ways to repair DNA abrasion. These are complex processes that are aimed at different types
of injury [94,95]. Enhanced developmental retention of alterations that could potentially con-
tribute to increased drug resistance could increase the existence of a “mutate phenotype” [96].
Chemotherapy, which is widely used in cancer treatment, causes a large number of abnormal-
ities and can thus be a target site for cell reactions such as anthracyclines, ionizing radiation,
induced double-stranded DNA breaks, and single-strand breaks [97,98].

The DNA repair route to repair these damages encompasses direct repair by O6-
alkylguanine DNA alkyltransferase on alkyl additives; restitution via base excision repair

FIGURE 15.1 Molecular signaling pathway and drug target involvements in HCC cancer. HCC,
Hepatocellular carcinoma.
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(BER) of single-strand breaks and base damage; nuclear excision repair (NER) of massive
DNA inducts; double-strand break repair by HR (homologous recombination) and NHEJ
(nonhomologous end joining); repairing DNA crosslink connections and mismatches, dele-
tions, and insertions by interstrand DNA crosslink repair and DNA mismatch repair
(MMR) [94,99!102]. Alkylating models are frequently used in cancer treatment, which can
cause DNA breakage and cell death as one of the vital DNA lesions caused by alkylating
DNA at the O6 guanine site. Cancer methylating DNA chemotherapy includes temozolo-
mide (TMZ), streptozotocin, procarbazine, and dacarbazine. By transferring the alkyl resi-
due directly to its active site, where the alkyl group is covalently bound together, the O6-
methylguanine DNA methyltransferase (MGMT) protein extracts alkyl from O6-
alkyguanine, resulting in protein inactivation [103]. Many studies have found that MGMT
activity is strongly linked to chemoresistance in primary tumors and human tumor cell
lines [104,105], directly linking protein overexpression and resistance pattern [106].

During DNA replication, MMR identifies and fixes base-base mispairs and small-scale
insertion and deletion mutations in repetitive microsatellite regions and controls HR remedi-
ation of DNA damage caused by ROS, and alkylating agents are also involved in MMR pro-
teins. In the event of DNA damage, these proteins interact with components in other repair
systems, including NER, BER, and HR [107], and their deficiency contributes to an array of
cancer, including hereditary nonpolyposis colorectal cancer (Lynch syndrome) [108,109].
The silencing of MMR in cancer cells results in tolerance to alkylating agents such as TMZ
and procarbazine. MMR-deficient cells are relatively resilient to methylates (up to 100-fold).
In contrast, cells with a functioning MMR system undergo G2 halting or programmed cell
death based on the magnitude of the DNA defect.

Resistance to clinically relevant drugs such as epipodophyllotoxins, alkylating agents,
antimetabolites, platinum-containing compounds, and anthracyclines is associated with
MMR protein pathway downregulation [110].

BER provides the main route for eliminating minor base lesions from the genome that
are non-helix-distorting. BER mainly targets base lesions through oxidative damage, alky-
lating, deaminating, and deburring and depyrimidization. BER-targeted chemical thera-
peutic agents include streptozotocin, dacarbazine, melphalan, TMZ, and ROS generation
by-product anthracyclines (doxorubicin, epirubicin, daunorubicin), paclitaxel, and Pt-
based drugs (cisplatin and oxaliplatin) [102]. Once the specific DNA glycosylase identifies
the damaged base, the dissociation of the N-glycosidic bond is catalyzed by removing the
damaged base and forming an AP site, which is further processed by DNA AP endonucle-
ase or lyase [111]. A spike in BER expression in imatinib K562 leukemia-resistant cells
MDB4 and NTHL1 was observed with decreased resistance expression levels of cells with
small interfering RNA (siRNA) cell survival after doxorubicin dosing [112].

Apoptotic pathway

Programmed cell death (PCD) is involved in several pathological and physiological
pathways [113]. Apart from proliferating and resisting growth suppression, aversion to
cell death or apoptotic signal disruption is one of the critical drivers of carcinogenesis
[114]. For both tumor generation and drug resistance to be effective, PCD is caused by
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several external and covert stress signals that must be resolved. Apoptosis operates mainly
through two mechanisms: the cyt c!releasing mitochondrial pathway that binds to the
caspase effector protease level and the extrinsic signaling pathway of the death receptor.
The beginning of such frameworks corresponds to the stimulation of caspases, which facil-
itates the division of cell substrates and lead to phenotypic and biochemical modifications
before apoptosis [115].

Damage to DNA and instigation of oncogenes may lead to an accumulation of p53,
which results in the G1 phase of cell cycle arrest or stimulates apoptotic death. Based on
the degree of DNA damage, the cancer resistance of chemotherapy may be caused by
mutation or inactivation of p53 [116]. Further, research has shown that cisplatin resistance
to apoptosis-inducing ligand (TRAIL) has been overturned in HCC-related TNF cells,
depending on p53 status [117]. The absolute stimulus for caspase induction in the endoge-
nous system is release by mitochondrial outer membrane permeability under tight regula-
tion of the BCL2 protein family—proapoptotic and antiapoptotic [118] and BH3 proteins
(Bim, Noxa, Bid, Puma, and Bad)—to liberate factors including cytochrome C. The TP53
tumor suppressor gene, best known for its monitoring activity concerning DNA defects,
promotes the expression of various integral pathway control genes, particularly Bax and
PUMA, which eventually lead to the stimulation of caspases [119].

Autophagy

Autophagy is an extensively conserved, autoplastic evolutionary cellular mechanism
that erodes and regenerates cytoplasmic components (long-lived or misfolded proteins,
protein collates, and impaired organelles) to preserve homeostasis [119,120]. Basal autop-
hagy is a physiologically focused energy recycling mechanism that responds more and
more to protein-lipid turnover, including starvation. It can therefore be interpreted as a
prosurvival mechanism for any normal or cancer cell. A regulated PCD mechanism called
autophagic cell death is observed during long starvation periods [121].

Autophagy typically plays a binary role in MDR cancer. It corresponds not only to the
growth of MDR but also to the destruction of MDR cancer cells in which the pathways of
apoptosis are inactive [122,123]. In carcinoma cases, autophagy plays an active role by reg-
ulating several pathways, including class III and class I PI3K (PI3K-I and PI3K-III), TP53,
mTORC 1/2 AKT, and BCL2, that regulate cell life and death [124]. Autophagy initiation
and boosted signaling pathways of PI3K-AKT-mTOR and MAPK are often linked to sus-
ceptibility to a broad range of drugs in different types of cancer, further demonstrating
their significance during carcinogenesis [119].

Cancer stem cells

Cancer stem cells (CSCs) or tumor-initiating cells (TICs) are cancer cells that are capable
of self-renewing and distinguishing between heterogeneous tumor cell lines [125!127].
Published studies show that these stem cells respond to standard chemotherapy because a
small group of tumor tissue cells, defined as CSCs, can thrive and develop. In contrast,
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most chemotherapy agents destroy most cancer cells [128]. The HCC CSC markers include
CD133, deubiquitin-specific protease 22 (USP22), oval cell marker (OV6), epithelial cell
adhesion molecule (EpCAM), CD13, CD44, CD24, and CD90. Several biomarkers that con-
fer drug resistance to HCC have been identified [115,129]. Activation of the signaling path-
way of Wnt/beta-catenin, Hh, and Notch 1 has been shown to strengthen chemoresistance
in combination therapy to IFN-α/5-FU, SHH, GSIs, and NICD1, respectively [126].

Researchers have suggested that higher levels of ABC protein expression may be the
primary survival response for CSCs in therapeutic drug reactions [130]. Reduced expres-
sion profile of USP22 significantly censored ABCC1 (MRP1) expression signals in the HCC
cell line by confirming the USP22-ABCC1 alliance in the HCC cell tissue clinical sample.
These findings show that USP22 is related to the BEL-7402/FU MDR phenotype [115]. The
TICs also show a reduced level of ROS, owing to the upregulated expression of free radi-
cal scavenging systems, leading to higher ROS defense lines and radiation resilience [126].

Tumor microenvironment

In epithelial mesenchymal transformation and MDR, the connection of tumor cells to
the TME is essential [131]. The tumor’s microenvironment constitutes an extracellular
matrix, aided by anomalous vasculature, cancer stromal cells, low pH, inadequate nutri-
tion, high interstitial pressure, tumor hypoperfusion, and low oxygen; the anoxic condition
can cause chemoresistance [115,132,133]. Cancer cells display higher glucose metabolism
levels in comparison to healthy cells and under hypoxic conditions, indicating the
Warburg effect favoring glycolysis to oxidative phosphorylation. This inevitably produces
lactic acid, which results in acidification [134]. The structure and arrangement of the ECM
and stromal components lead to defined drug concentration gradients, intensified intersti-
tial pressures, and metabolism changes that can all significantly increase tumor cell resis-
tance to the therapeutic agent [135].

Therapeutic aspects (overcoming multidrug resistance)

A significant therapeutic payoff for cancer requires that malignant cells lose their MRP
or MDR-1 driven chemical defense properties, boosting the apoptotic frequency for those
cells. Several variables may affect chemicals’ ability to destroy tumor cells. These include,
but are not limited to, metabolism and drug pharmacokinetics, microenvironmental
changes, genetic or epigenetic variations; genes restoring DNA, tumor suppressor genes,
MDR genes, genes with an apoptotic relationship, and various growth factors [136].
Therefore it is the first step toward addressing this obstacle to grass-roots awareness of the
possible etiology of resistance.

As has been noted, MDR is handled by extrusion pumps, which are an array of ABC
drug carriers, including P-glycoprotein (P-gp). The exorbitant expression of P-gp is a ther-
apeutic aim to bypass MDR in cancer cells, one way of coping with MDR by encapsulating
P-gp substratum drugs into liposome nanoparticles has already been shown to be possible
in clinical environments [137,138]. It is developing drugs that are not prone to P-gp
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extrusion that elevates the expression profile of cancer cells that are not P-gp substrates.
Taxane, tesetaxel (DJ-927), and milataxel data (MAC-321) are weak P-gp strata and have
exhibited improved antitumor performance as correlated with in vitro or in vivo docetaxel
[139]. Molecules that block the action of P-gp and the transporter for outflows, such as tel-
atinib or silibinin, can overcome resistance. These are natural molecules extracted from
milk thistle seeds that inject ABCG2 efflux and enhance the efficacy of drugs in tumor cells
[140]. Chemotherapy induces cell apoptosis, but this strategy is prevented in cancerous
cells because of escalated expression of antiapoptotic protein such as Bcl-2 or a reduction
in the proapoptotic proteins along with the expression of Fas, Bax, or cysteine proteases
(caspase proteins) [141,142].

Increased levels of protein-tyrosine kinases (PTKs), such as EGFR, HER2, and IGFR,
trigger potential mechanisms in cell signals, including PI3/AKT, NIF, STAT3, and ERK1/
2, which are also the key causes of chemotherapy resistance in tumor cells’ aberrant affir-
mation. Consequently, the targeted therapy can resolve such opposition against particular
PTKs [142]. Over the years, objective treatments in the medical field have evolved and
proved promising. Trastuzumab is an antibody that targets and links positively related
HER2 receptors to the cell surface and precludes stimulation of a receptor [143]. By com-
parison, the blockage of EGFR, an antibody that binds EGFR by cetuximab selectively,
demonstrated improvement in a response rate of 5-Fu in patients with neoplastic colon
cancer and liver cancer who initially failed 5-FU medication [144,145]. DNA methylation is
a significant process for deranging the expression of genes linked to apoptotic cell death.
Chemotherapy combined with methylation-reversing agents aims to resolve resistance to
medications [146].

Combinatorial immunotherapy, which includes monoclonal antibodies, cancer vaccines,
and immune-control inhibitors such as PD-1/PDL-1, has the potential to transform cancer
care by inducing, growing, or suppressing inflammatory immune responses against vari-
ous cancerous cell etiologies [147,148]. Knockout genes with antisense molecules and the
editing of genes by CRISPR/Cas9 have proven to be successful for suppressing genes with
drug resistance [147]. Advances in siRNA technology will establish a new treatment
approach in gene-specific silencing that substantially represses mRNA expression and pre-
vents protein synthesis. MiR-125a-5p overexpression boosts drug sensitivity, while miR-
15!5p overexpression is correlated with tolerance to medications [149]. The production of
small molecule target histonic modifiers such as KDM4B will improve the effectiveness or
overcome drug impedance in standard chemotherapy [150!152]. Furthermore, the ancient
method of treatment of bacterial-mediated cancer therapy has been reinvigorated in syn-
thetic biology. It is innovative in confronting dynamics of primary resistance to conven-
tional treatments [145,153].

Conclusion and future perspectives

Despite recent developments in both pathophysiology and treatment, HCC is still a dis-
ease with a poor prognosis. MDR seems to be a significant barrier that seriously reduces
the successful treatment of cancer via medical chemotherapy. Experimental models of
drug-resistant cancer helped to identify many of the principles that govern MDR growth.
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The evolution in molecular science and computational biology has enabled us to develop
“molecular autographs” for cancer patients and to distinguish patients who will benefit
from specific treatments. The MDR protein expression level can differ as a result of MDR.
Adaptation to therapeutic interventions alone can be explained by the context of particular
markers or tumor forms, making it hard to forecast resistance modalities. More complex
prediction methods are needed to enhance the response rate to targeted therapies.
Advancing molecular diagnostic techniques, chemotherapy-immunotherapy combination
therapy, or combinatorial inhibition strategies will have pharmaceutical and therapeutic
roles in overcoming the resistance battle. Further research is expected to reveal the use of
novel practices such as viral vector, nanoparticle-based approaches, the functionality of
autophagy in a tumor microenvironment, and the association with other pathways of sig-
naling associated with the tumor drug resistance. The emergence of appropriate laboratory
tests, such as liquid biopsy through the estimation of cell-free RNA or cell-free DNA and
the sequence of tumor genomes of FFPE or plasma, would improve the ability to choose
the best drugs and prevent incompetent therapy for optimal clinical outcomes.

References
[1] Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. Estimating the global cancer

incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019;144(8):1941!53.
Available from: https://doi.org/10.1002/ijc.31937.

[2] Fernandes ESM, Rodrigues PD, Alvares-da-Silva MR, Scaffaro LA, Farenzena M, Teixeira UF, et al.
Treatment strategies for locally advanced hepatocellular carcinoma. Transl Gastroenterol Hepatol 2019;4:12.
Available from: https://doi.org/10.21037/tgh.2019.01.02.

[3] Verma HK, Merchant N, Bhaskar LVKS. Tumor necrosis factor-alpha gene promoter (TNF-&alpha; G-308A)
polymorphisms increase the risk of hepatocellular carcinoma in Asians: a meta-analysis. Crit Rev Oncog
2020;25(1):11!20. Available from: https://doi.org/10.1615/CritRevOncog.2020034846.

[4] Lemoine M, Thursz MR. Battlefield against hepatitis B infection and HCC in Africa. J Hepatol 2017;66
(3):645!54. Available from: https://doi.org/10.1016/j.jhep.2016.10.013.

[5] Baatarkhuu O, Gerelchimeg T, Munkh-Orshikh D, Batsukh B, Sarangua G, Amarsanaa J. Epidemiology,
genotype distribution, prognosis, control, and management of viral hepatitis B, C, D, and hepatocellular car-
cinoma in Mongolia. Euroasian J Hepato-Gastroenterol 2018;8(1):57!62. Available from: https://doi.org/
10.5005/jp-journals-10018-1260.

[6] Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging 2016;11:967!76.
Available from: https://doi.org/10.2147/cia.s109285.

[7] Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J
Gastroenterol 2018;24(34):3834!48. Available from: https://doi.org/10.3748/wjg.v24.i34.3834.

[8] Liang Y, Liang Q, Qiao L, Xiao F. MicroRNAs modulate drug resistance-related mechanisms in hepatocellu-
lar carcinoma. Front Oncol 2020;10:920. Available from: https://doi.org/10.3389/fonc.2020.00920.

[9] Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, et al. The emerging role of microRNAs and long noncoding
RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer 2019;18(1):147. Available from: https://
doi.org/10.1186/s12943-019-1086-z.

[10] Duan B, Huang C, Bai J, Zhang YL, Wang X, Yang J, et al. Multidrug resistance in hepatocellular carcinoma.
In: Tirnitz-Parker JEE, editor. Hepatocellular carcinoma. Brisbane, Australia: Codon Publications; 2019.
Available from: http://doi.org/10.15586/hepatocellularcarcinoma.2019.ch8.

[11] Russi S, Verma HK, Laurino S, Mazzone P, Storto G, Nardelli A, et al. Adapting and surviving: intra and
extra-cellular remodeling in drug-resistant gastric cancer cells. Int J Mol Sci 2019;20(15):3736. Available from:
https://doi.org/10.3390/ijms20153736.

[12] Verma HKFG, Bhaskar LVKS. Molecular signaling pathways involved in gastric cancer chemoresistance.
In: Raju G, Bhaskar L, editors. Theranostics approaches to gastric and colon cancer. Diagnostics and

246 15. Multidrug resistance, a major obstacle in hepatocellular carcinoma treatment: challenges and future perspectives

Theranostics and Precision Medicine For the Management of Hepatocellular

Carcinoma, Volume 2

https://doi.org/10.1002/ijc.31937
https://doi.org/10.21037/tgh.2019.01.02
https://doi.org/10.1615/CritRevOncog.2020034846
https://doi.org/10.1016/j.jhep.2016.10.013
https://doi.org/10.5005/jp-journals-10018-1260
https://doi.org/10.5005/jp-journals-10018-1260
https://doi.org/10.2147/cia.s109285
https://doi.org/10.3748/wjg.v24.i34.3834
https://doi.org/10.3389/fonc.2020.00920
https://doi.org/10.1186/s12943-019-1086-z
https://doi.org/10.1186/s12943-019-1086-z
https://doi.org/10.15586/hepatocellularcarcinoma.2019.ch8
https://doi.org/10.3390/ijms20153736


therapeutic advances in GI malignancies. Singapore: Springer; 2020, p. 117!34. Available from: https://doi.
org/10.1007/978-981-15-2017-4_8.

[13] Swamy SG, Kameshwar VH, Shubha PB, Looi CY, Shanmugam MK, Arfuso F, et al. Targeting multiple onco-
genic pathways for the treatment of hepatocellular carcinoma. Target Oncol 2017;12(1):1!10. Available from:
https://doi.org/10.1007/s11523-016-0452-7.

[14] Eggert T, Greten TF. Current standard and future perspectives in non-surgical therapy for hepatocellular car-
cinoma. Digestion 2017;96(1):1!4. Available from: https://doi.org/10.1159/000464282.

[15] Xu Z, Xie H, Zhou L, Chen X, Zheng S. The combination strategy of transarterial chemoembolization and
radiofrequency ablation or microwave ablation against hepatocellular carcinoma. Anal Cell Pathol (Amst)
2019;2019:8619096. Available from: https://doi.org/10.1155/2019/8619096.

[16] Le Grazie M, Biagini MR, Tarocchi M, Polvani S, Galli A. Chemotherapy for hepatocellular carcinoma: the pres-
ent and the future. World J Hepatol 2017;9(21):907!20. Available from: https://doi.org/10.4254/wjh.v9.i21.907.

[17] Yau T, Chen P-J, Chan P, Curtis CM, Murphy PS, Suttle AB, et al. Phase I dose-finding study of pazopanib
in hepatocellular carcinoma: evaluation of early efficacy, pharmacokinetics, and pharmacodynamics. Clin
Cancer Res 2011;17(21):6914!23. Available from: https://doi.org/10.1158/1078-0432.ccr-11-0793.

[18] Leung TW, Patt YZ, Lau WY, Ho SK, Yu SC, Chan AT, et al. Complete pathological remission is possible
with systemic combination chemotherapy for inoperable hepatocellular carcinoma. Clin Cancer Res 1999;5
(7):1676!81.

[19] Barbier L, Fuks D, Pessaux P, Muscari F, Le Treut Y-P, Faivre S, et al. Safety of liver resection for hepatocel-
lular carcinoma after sorafenib therapy: a multicenter case-matched study. Ann Surgical Oncol 2013;20
(11):3603!9. Available from: https://doi.org/10.1245/s10434-013-3029-z.

[20] Abou-Alfa GK, Huitzil-Melendez FD, O’Reilly EM, Saltz LB. Current management of advanced hepatocellu-
lar carcinoma. Gastrointest Cancer Res 2008;2(2):64!70.

[21] Ng IO, Poon RT, Lee JM, Fan ST, Ng M, Tso WK. Microvessel density, vascular endothelial growth factor
and its receptors Flt-1 and Flk-1/KDR in hepatocellular carcinoma. Am J Clin Pathol 2001;116(6):838!45.
Available from: https://doi.org/10.1309/fxnl-qtn1-94fh-ab3a.

[22] Zhu AX, Kudo M, Assenat E, Cattan S, Kang Y-K, Lim HY, et al. Effect of everolimus on survival in
advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA
2014;312(1):57!67. Available from: https://doi.org/10.1001/jama.2014.7189.

[23] Chen Z-Y, Shi M, Peng L-X, Wei W, Li X-J, Guo Z-X, et al. Dovitinib preferentially targets endothelial cells
rather than cancer cells for the inhibition of hepatocellular carcinoma growth and metastasis. J Transl Med
2012;10:245. Available from: https://doi.org/10.1186/1479-5876-10-245.

[24] Thomas HR, Feng M. Stereotactic body radiation therapy (SBRT) in hepatocellular carcinoma. Curr Hepatol
Rep 2021;20(1):12!22. Available from: https://doi.org/10.1007/s11901-020-00559-1.

[25] Montal R, Andreu-Oller C, Bassaganyas L, Esteban-Fabró R, Moran S, Montironi C, et al. Molecular portrait
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