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Risk factors and pathogenic
mechanism—associated hepatocellular
carcinoma
Nisha Sahu, Samrat Rakshit and EV.K.S. Bhaskar

Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India

Abstract

Hepatocellular carcinoma (HCC) is the most prevalent liver cancer, accounting for more than 80% of all
liver cancers worldwide. HCC is the fourth leading cause of cancer-related death in 2018. Globally, nearly
800,000 new cases of HCC have been diagnosed each year. The development of HCC results from the dys-
function of a multistep biological mechanism in liver where healthy hepatocytes become malignant.
Several factors like regulation of oxidative stress, genetic and epigenetic alterations, inflammation, and
immunity are involved in the development of HCC. Hepatitis B and C, alcohol- and drug-induced steato-
hepatitis, aflatoxins, and carcinogens such as polyvinyl chloride, polychlorinated biphenyls, pyrethrins,
chlordane, and dithiothreitol are all major risk factors for HCC. These risk factors often affect hepatocytes
to cause hepatotoxicity by cholestasis, fatty liver, fibrosis, and cirrhosis leading to HCC. These risk factors
modulate oxidative stress, proliferation, apoptosis, mitochondrial dysregulation, lipid metabolism, insulin
resistance, and many more by regulating various signaling pathways such as P53, P73, Ras, Wnt/3-catenin,
JAK/STAT3, Bcl-2, CDK-4, mitogen-activated protein kinase, tumor necrosis factor-o, and transforming
growth factor-3 are involved in the development of HCC. Understanding the potential mechanisms under-
lying these HCC-related risk factors will aid in the development of new therapeutic strategies to reduce
HCC-related morbidity and mortality.

Keywords: Hepatocellular carcinoma; hepatitis B virus; hepatitis C virus; nonalcoholic fatty liver disease;
nonalcoholic steatohepatitis

Abbreviation
EMT epithelial-to-mesenchymal trans-differentiation
HBx hepatitis B X protein
HBV hepatitis B virus
HCV hepatitis C virus
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HSCs hepatic stellate cells

MAPK1 mitogen-activated protein kinase 1
NAFLD nonalcoholic fatty liver disease
NASH  nonalcoholic steatohepatitis
NF-xB  nuclear factor-xB

PKR protein kinase R

TERT telomerase reverse transcriptase
TGF transforming growth factor
TNF-a  tumor necrosis factor-o

Introduction

Hepatocellular carcinoma (HCC) is the most prevalent liver cancer, accounting for over
80% of all liver cancers worldwide. HCC was the fourth leading cause of cancer-related
death in 2018 [1]. HCC incidence and mortality rates have been rising in recent decades,
with about 800,000 new cases identified each year [2]. It has a wide geographic range,
with many cases occurring in developing countries such as sub-Saharan Africa and Asia [3].
HCC is a complex disease that develops due to underlying liver dysfunction caused
by a multistep biological mechanism in which healthy hepatocytes become malignant. The
development of HCC is influenced by oxidative stress, genetic and epigenetic changes,
inflammation, and immunity [4]. Further, HCC has been linked to a number of other envi-
ronmental risk factors.

Viral infections such as hepatitis B virus (HBV) and hepatitis C virus (HCV) are the most
common causes of persistent liver inflammation [5]. This inflammation eventually weakens
the liver immune system, contributing to the severity of the necrotic-inflammatory injury,
the formation of liver fibrosis, and the progression of the disease to HCC [6]. Aflatoxin-
contaminated food consumption, nonalcoholic steatohepatitis (NASH), environmental toxic
intake, and exposure to additional chemical carcinogens (polyvinylchloride, trichloroethy-
lene, and so on) are all significant risk factors (Fig. 3.1). Recent reports suggested that the
metabolic syndrome, including diabetes as well obesity, raises the risk of HCC [7]. Chronic
inflammation—induced hepatocyte necrosis, decreased regeneration potential, and fibrotic
deposition are common early signs of HCC progression. Understanding the basic mechan-
isms underlying its emergence and progression may aid in its prevention. Disparities in
HCC treatment can only be avoided if the disease is detected and treated early [8].

Risk factors

Viral hepatitis B and C

Chronic HBV and HCV infections are responsible for more than 80% of all HCC cases
worldwide. Host factors, environmental factors, and hepatitis viruses all play a role in the
development of HCC [9]. HCC cases are thought to be significantly higher in eastern Asia
and sub-Saharan Africa, where HBV infection is thought to be widespread [10]. Increases
in HCV infection, longer alcoholic intake, and nonalcoholic fatty liver disease (NAFLD) all

Theranostics and Precision Medicine for the Management of Hepatocellular
Carcinoma, Volume 1
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contribute to a higher prevalence of HCC in Western countries. HCC develops in 2%—5%
of cirrhotic patients with chronic HBV or HCV infection each year [1,11].

People who have been infected with HBV for a long time have a 5—100-fold increased
risk of developing HCC [12]. Although HBV infection is asymptomatic in the early stages,
15%—40% of chronic HBV patients develop cirrhosis or cirrhosis-related complications
over the course of their lives [13]. HBV DNA levels are higher in patients with chronic
HBV infection, which is one of the major risk factors for the development of HCC. The
most effective treatments focused on lowering HBV DNA levels rather than eradicating
the infection completely [14].

Alcohol

Worldwide, alcohol consumption is the second leading cause of HCC [15]. In developed
countries, particularly the United States and Europe, alcohol consumption is higher, and it
is one of the leading causes of HCC in these regions [16]. Excessive alcohol consumption
increased the risk of cirrhosis and HCC in a linear dose—response relationship [17]. When
alcohol consumption exceeds 80 g a day for more than 10 years, the risk of HCC is
expected to rise by five to seven folds [18]. Multiple studies have shown that alcohol use,
either alone or in combination with HBV, HCV, and diabetes, causes HCC [19].

NAFLD-/NASH-induced HCC

NAFLD is the most common liver disease, accounting for nearly 25% of all liver dis-
eases worldwide [1]. NAFLD is characterized by a number of liver diseases, including

Theranostics and Precision Medicine for the Management of Hepatocellular
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triglyceride accumulation, apoptosis, inflammation, and fibrosis, collectively known as
NASH [20]. NAFLD has emerged as a major risk factor for HCC in recent years, with stud-
ies indicating that it can increase the risk of HCC by up to 2.6 fold. Apart from NASH and
NAFLD caused by cirrhosis, noncirrhotic NASH or benign steatosis has also been linked
to HCC development [21].

Patients with NAFLD can develop a variety of liver diseases, ranging from simple
steatosis to liver cell injury, as a result of triglycerides accumulation in their livers. NASH
is the first stage of the inflammatory phase of NAFLD, which occurs in people who
drink little or no alcohol [22]. The metabolic syndrome is key to the link between NASH
and HCC. NASH causes inflammation, hepatocellular injury, and fibrosis, all of which
raise the risk of HCC, which has a high mortality rate. NAFLD is the hepatic manifestation
of metabolic syndrome and is associated with obesity and diabetes [23]. Metabolic syn-
drome is associated with the lipid accumulation in the liver. Excessive lipid accumulation
leads to oxidative stress and mitochondrial dysfunction. Changes in lipid metabolism,
changes in the immune system, and changes in growth and development pathways are all
procarcinogenic processes caused by mitochondrial damage [24].

Aflatoxins

Aflatoxins are mycotoxins with a strong hepatocarcinogenic effect that can be found
in a variety of cereals and oilseeds [25]. About 25% of the world’s crops are thought to
be contaminated with aflatoxins. In Western countries, exposure to aflatoxins is minimal,
while in some West African countries, due to insufficient postharvest processing, more
than 90% of the general population is exposed to aflatoxins [26]. Aflatoxin exposure is
thought to be one of the causes of HCC, as evidenced by the presence of multiple
aflatoxin contaminations in areas where HCC is prevalent [27]. The toxic metabolites of
aflatoxin enter the human system through polluted animal and plant products eaten
as food, particularly grains. There are nearly 18 aflatoxins identified, but 4 of them,
AFB 1, AFB 2, AFG 1, and AFG 2, have been proven to carcinogenic in both animals and
humans [28].

Other chemical toxicants

Exposure to hazardous chemicals at workplace is also a possible risk factor for HCC
[29]. Workers are frequently exposed to a broad range of hazardous chemical agents as a
result of a variety of workplace practices. The liver is the primary detoxifying organ, and
it is responsible for all xenobiotics that enter the body. The liver is the main target organ
because it is the primary site for a number of metabolic and excretory processes.
Hepatotoxicity is caused by toxic chemicals carcinogens such as polyvinyl chloride, poly-
chlorinated biphenyls, pyrethrins, chlordane, and dithiothreitol, which cause cholestatic
injury, hepatocellular damage, fatty liver, fibrosis, and cirrhosis, as well as malignancies
such as HCC [30]. Trichloroethylene, arsenic, cadmium, lead, thallium, and nickel, among
other toxic metals found in contaminated ground water, have negative effects on the
liver [31,32].

Theranostics and Precision Medicine for the Management of Hepatocellular
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Mechanisms of action

Hepatitis B virus infection

HBV is a DNA-coated Hepadnaviridae virus. HBV is a reverse-transcribed, partially
double-stranded DNA virus that is noncytopathic. The structural core protein (HBc), envelope
proteins, reverse transcriptase, and an oncoprotein called the regulatory hepatitis B X protein
(HBx) are all encoded by this viral genome [33,34]. These proteins play a crucial role in the
progression of HCC. The size of the envelop protein is divided into three parts: small (S),
medium (M), and large (L). To complete the replication process, the N-terminal extensions of
the M and L types of envelop proteins interact with the endoplasmic reticulum (ER) mem-
brane. Noncircularized HBV genomes have been confirmed to integrate into the hepatocellular
genome after previously being thought to be unrelated to the virus’s life cycle [35].

HBV can trigger HCC in a number of ways, including oxidative stress and viral pro-
teins [36]. As a result of the incorporation of HBV DNA into the host genome, HBx med-
iates a specific mechanism that alters the expression of endogenic genes or promotes
chromosomal instability [37]. Physical interactions between the virus and the ER trigger
HBV-induced hepatocarcinogenesis by aggravating ER stress and ultimately triggering
oxidative stress, which activates multiple signaling pathways, inducing mutations and
triggering hepatic stellate cells (HSCs) [38]. Microdeletions of cancer-relevant genes such
as telomerase reverse transcriptase (TERT) and mitogen-activated protein kinase 1
(MAPK1) from host DNA are frequently associated with HBV genome integration [39].
SRC (Proto-oncogene tyrosine-protein kinase Src) tyrosine kinases, Ras, Raf (rapidly accel-
erated fibrosarcoma), MAPK, extracellular signal—regulated protein kinase, JNK (Janus
kinase), and other growth-control genes are all affected by HBx transcriptional activation
activity [40]. Finally, HBx binds to and inactivates the tumor suppressor gene p53, result-
ing in uncontrolled cellular proliferation, compromised cell survival, and DNA-damage
checkpoints (Fig. 3.2) [41].

Chronic inflammation Cirrhosis
‘ " HBx

HBV \ *P;ie!" : P53

HBV DNA-integration —— Alter expression — | Cell proliferation
(TERT D (MAPKI D ERK > \
Ras =
FIGURE 3.2 Mechanism of HBV involved in progression of HCC. HBV, Hepatitis B virus; HCC, hepatocellular
carcinoma.
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At the molecular and cellular levels, the HBx has a variety of functions, including dis-
rupting apoptosis in hepatocytes and modulating DNA-binding specificity via transcrip-
tional regulation of the p53 tumor suppressor gene, which is important in the progression
of HCC [42,43]. The HBx is also involved in cell cycle progression and cellular signaling.
The HBx interacts with a variety of host factors to activate the Ras—Raf—MAPK pathway,
Src-dependent pathway, phosphatidylinositol 3-kinases (PI3K)—Akt pathway, nuclear fac-
tor-xB (NF-xB)/STAT-3 pathway, and wnt/-catenin pathway to maintain its genetic stabil-
ity [44]. HBx alters the methylation profiles of oncogenes and tumor suppressor genes, as
well as the acetylation of histone proteins in tumor-related genes and changes in many
microRNAs, resulting in epigenetic changes [45].

Hepatitis C virus infection

HCV infection causes one-third of all HCC cases worldwide, making it a global health
concern. The onset of cirrhosis increases the risk of HCC cases from 1% to 8% in patients
with chronic HCV infection [46]. HCC caused by HCV infection is a common sign that a
liver transplant is necessary [47].

HCV is a single-stranded RNA virus that belongs to the Hepacivirus family and is noncy-
topathic. After translation, this RNA encodes a 3000 amino acid polyprotein that is degraded
into structural (S) and nonstructural (NS) proteins by proteolysis. The core protein, the enve-
lope E1 and E2 glycoproteins, and the p7 protein are structural proteins that make up the
viral particle and are involved in viral morphology and host cell entry [48]. Nonstructural
proteins NS1, NS2, NS3, NS4A /B, and NS5A/B are involved in genome replication, particle
assembly, and infection [49]. HBV infection, obesity, insulin resistance, and steatohepatitis all
contribute to the development of HCV-related HCC [9]. Immune-mediated chronic inflam-
mation is thought to aid in the development of HCC during HCV infection. Interfering with
a variety of cell pathways that control energy metabolism, cell proliferation, and apoptosis
can also cause HCC [50]. HCV can cause double-stranded DNA breaks, which can lead to
mutations in genes such as BCL-6, TP53, immunoglobulin genes, and (-catenin [51].

HCYV infection is a leading cause of HCC, and it is mediated by viral-induced factors
as well as the host’s immune response. Interactions of structural and nonstructural pro-
teins with various host cellular proteins alter hepatocytes slightly (Fig. 3.3). HCV replicates
in the cytoplasm of hepatocytes after integrating its genome into the host DNA. HCV-
associated HCC is caused by virus-induced, often indirect, deregulation of host cellular
processes such as liver cell proliferation and steatosis, oxidative stress and inflammation
inducing mutations and genome instability, mitochondrial dysregulation, and generation
of free radicals [52].

HCV may also cause HCC in the host cell by interfering with cellular regulatory path-
ways such as insulin resistance, proliferation, epithelial-to-mesenchymal trans-differentia-
tion (EMT), apoptosis, DNA repair, and oxidative stress [49]. HCV core proteins, as well
as various NS proteins, may all play a role in HCV-related HCC development and pro-
gression. HCV viral proteins can cause HCC by activating signaling pathways that pro-
mote cell division and growth, and also by inhibiting tumor suppressor genes [53].

The HCV core protein can cause lipogenesis and an increase in reactive oxygen species
(ROS) production, which can lead to mitochondrial oxidation and oxidative stress metabolism
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problems [54]. HCV core protein inhibits tumor suppressor genes like p53 and retinoblastoma
protein. The loss of p53 and retinoblastoma work together to cause a higher degree of HCC.
P73 and P21, two tumor suppressor proteins, interact with core protein as well as tumor
necrosis factor-a (TNF) signaling or a Bcl-2 family member that regulates apoptosis [55]. The
HCV protein core also affects cell cycle signaling pathways by increasing cyclin E/Cdk2
levels, as well as RAF/MAPK, which promotes cell proliferation and development by induc-
ing Wnt/-catenin and transforming growth factor (TGF)-3 signaling pathways [56—58]. All of
these pathways point to a role for this protein core in reducing apoptosis and promoting cell
proliferation as HCC progresses. The E1/E2 structural proteins inhibit dsSRNA protein kinase
(PKR) and promote cell proliferation and survival by inhibiting NK (Natural Killer) or T-cell
activation and the MAPK/extracellular signal regulation via the inclusion of transcription fac-
tor ATE-2 [59].

The nonstructural protein component of HCV aids in the growth of HCC through
inducing TGF-8 and activating HSCs. The TP53, TERT, and B-catenin genes are commonly
mutated in HCC. Mutations of these genes impend telomere maintenance, which ulti-
mately leads to increased oxidative stress. Nonstructural protein NS2 induces expression
of cyclin E by triggering cyclin D/CDK4 and also play significant role in the process
of apoptosis by intrusion with p53 pathway [60]. NS3, a nonstructural protein, regulates
a number of signaling pathways that have the potential to transform cells. In addition, it
interacts with protein kinase A and prevents it from translocating to the nucleus. It
involves preventing immune surveillance by inhibiting type-1 interferon induction medi-
ated by interferon response factor (IRF-3). Further, by targeting adaptor molecules in the
TLR3 and RIG-1 signal pathways, NS3/4A inhibits IRF-3 transcription factor activation
and promotes cell proliferation [61].
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The other, nonstructural protein, NS5A is a transcription factor activator involved in
cell proliferation and apoptosis inhibition via the cell cycle, Bcl-2, PI3K, Wnt/-catenin sig-
naling, and mTOR (mammalian target of rapamycin) signaling [62]. It disrupts the PKR-
p38 signaling pathway, resulting in abnormal mitosis, inhibits TGF signaling, preventing
SMAD (Mothers against decapentaplegic (MAD) homolog) proteins nuclear translocation,
and inhibits TNF-mediated apoptosis [63]. It affects the EMT pathway and aids in the con-
version of epithelial cells to mesenchymal stem cells. TGF and NS5A work together to acti-
vate stellate cells, which leads to fibrosis. NS5B relocates Rb back into the cytoplasm after
binding with it. E2F sensitive genes were activated to induce cell cycle progression due to
the proteasomal degradation [64] (Fig. 3.4).

Alcohol

Excessive alcohol consumption activates Kupffer cells by stimulating monocytes.
Activated Kupffer cells release chemokines and cytokines such as interleukin-6 (IL-6),
TNF, and prostaglandin E2. Chronic hepatocyte regeneration—destruction, HSC activation,
cirrhosis, caused by these cytotoxic effects, eventually lead to HCC [65]. Cirrhosis is one
of the most important factors in the progression of HCC. Alcohol, on the other hand,
can cause HCC through oxidative stress, inflammation, and endotoxemia. Acetaldehyde,
which is produced from ethanol by the enzyme alcohol-dehydrogenase (ADH), disrupts
the redox balance in mitochondria and inhibits hepatocyte-oxidation, leading to an
increase in fatty acid oxidation and lipogenesis, which promotes steatosis and inflamma-
tion [66]. Acetaldehyde is a naturally occurring highly toxic and carcinogenic substance.
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ADH-positive tumor cells have a high capacity for alcohol oxidation but a limited ability
to remove acetaldehyde [67]. Excessive alcohol consumption activates cytochrome CYP2EI,
which boosts acetaldehyde production in the liver. Accumulation of acetaldehyde causes
mitochondrial dysregulation, which leads to an accumulation of ROS, which contributes to
alcohol-induced oxidative stress in hepatocytes. Furthermore, the aggregation of intracyto-
plasmic lipid droplets in alcohol-induced steatosis may make hepatocytes more vulnerable
to toxic effects [68]. Enzymatic inactivation, lipid peroxidation, and DNA mutations may
all result in cellular damage and inhibit apoptosis when there is an excess of ROS pro-
duced in combination with the accumulation of injured proteins [18]. As levels of ROS
increase, lipid peroxidation products such as malondialdehyde and 4-hydroxy-2-nonenal
are produced, causing a mutation in the p53 gene at codon 249, which prevents cell apo-
ptosis and promotes cell proliferation [69,70]. These lipid peroxidation products also result
in the formation of HCC-causing mutagenic DNA adduct (Fig. 3.5).

DNA adducts such as N2-ethyl-20-deoxyguanosine and N2-propanol-20-deoxyguanosine
can be formed by acetaldehyde, which is capable of initiating replication errors and alter
the integrity of hepatocyte DNA [71,72]. The O6-methylguanosyl transferase, for example,
forms adducts that weaken the process of DNA repair and can play a role in HCC [73].
Acetaldehyde may also form stable adducts with proteins, causing structural and func-
tional changes. Furthermore, acetaldehyde destroys mitochondria, causing fatty acid oxida-
tion to be inhibited. Acetaldehyde stimulates the synthesis of collagen in HSCs, which is a
crucial step in the progression of cirrhosis and the growth of HCC. ROS are important
mediators of tumor angiogenesis and metastasis, resulting in the activation of the NF-«xB
signal [74]. Iron overload and TNF-a from inflammatory cells also influence the production
of ROS. Chronic alcohol intake also increases intestinal iron absorption and hepatic iron
storage. Iron overload causes breakdown of DNA strands and mutation of p53 gene, which
could cause HCC [75].

NAFLD-/NASH-induced HCC

The pathogenic pathways involved in HCC induced by NAFLD/NASH can be linked
to metabolic syndrome and obesity-induced chronic inflammation [76]. Insulin resistance
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FIGURE 3.5 Alcohol-induced pathways involved in the progression of HCC. HCC, Hepatocellular carcinoma.
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plays major role as one of the mediators, whether or not there is severe fibrosis or cirrho-
sis. Fig. 3.6 shows the interactions between NAFLD-/NASH-induced mechanisms leading
to HCC. NAFLD is primarily caused due to the modulation of caloric excess by poor diet
and a sedentary lifestyle [77]. Insulin resistance plays a critical role in this pathophysiolog-
ical mechanism, as it leads to an increase in liver fat accumulation due to an increase
in free fatty acid deposition (FFAs). The abundant amount of FFAs deposition cause lipo-
toxicity that promotes oxidative stress, protein misfolding and mitochondrial impairment
within liver cells. ROS overproduction causes mitochondrial damage, lipid peroxidation,
inflammation, and HSC activation, which leads to necrosis, cirrhosis, and HCC [78].
Insulin tolerance, lipid accumulation, apoptosis, and inflammation are all related to
NAFLD pathogenesis by dysregulated ER stress in the liver (Fig. 3.6).

Metabolic stress increases ROS production and induces inflammatory cytokine
release from liver cells, which triggering the JAK2/STAT (signal transducer and activa-
tor of transcription), MAPK, and PI3K signaling pathways in HCC cells by binding to
their receptors [79]. TNF-a is promoting the progression of HCC activating hepatic pro-
genitor cells, and IL-6 activates an oncogenic transcription factor that promotes cell
proliferation and inhibits apoptosis, playing a role in the progression of NASH-related
HCC [80].
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FIGURE 3.6 Interactions between NAFLD-/NASH-induced mechanisms leading to HCC. HCC,
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Several hormones, including insulin and insulin-like growth factor 1 (IGF-1), play
important roles in developing NAFLD-related HCC [81]. Insulin resistance and hyperinsu-
linemia are often responsible for this to happen. Insulin and IGF-1 activate the PI3K and
MAPK pathways through a cascade of signaling by binding to their respective receptors.
Both the pathways are critical in the origination and progression of HCC since they regu-
late proliferation and apoptosis in the cell.

Several single nucleotide polymorphisms, several microRNAs (miRNAs), and genetic
instability are also encouraging NASH to HCC progression [82]. Exome-sequencing study
of HCC identified key mutations in some oncogenic genes, including TERT involved in
p53 and Wnt/(3-catenin signaling pathway. It also facilitates the binding of nucleotides to
the ends of eukaryotic chromosomes [83]. Epigenetic changes, such as abnormal DNA
methylation, silenced DNA repairing genes, metabolism of lipids and fibrosis progression,
are also key factors in NASH progression [84]. Noncoding RNAs such as miRNAs inter-
fere with transcription and translation by suppressing gene expression. These miRNAs
involved in major cell signalings, pathways, including Wnt/@-catenin, MAPK, TGF-3, and
PI3K/AKT/mTOR can be triggered in HCC [85].

Aflatoxins

Aflatoxin is mainly metabolized in the liver cells [86]. As a result of aflatoxin exposure,
DNA adducts form in hepatocytes, activating the mutation site of the tumor suppressor
gene p53, indicating aflatoxin’s direct involvement in HCC [87]. The p53 gene induces
apoptosis and cell cycle arrest, which contributes to the deactivation of mutations in the
p53 gene or other pathway mechanisms, which can reduce hepatocyte susceptibility to
other cancer-causing agents that trigger oncogenic pathways and influence the production
of HCCs [88].

Aflatoxin carcinogenicity has been linked to hepatocytes, where they are first metabo-
lized into reactive intermediate metabolites. AFBl-exo 8,9-epoxide, the first intermediate
product of AFB1 metabolism by microsomal cytochrome enzyme, is one of the most well-
studied aflatoxins (CYP450). This is thought to be the most serious cause of genotoxicity.
The International Agency for Research on Cancer classified the most harmful hepatic car-
cinogen, AFB1, as a type I human carcinogen in 1993 [89]. CYP3A4, CYP3A5, CYP3A7,
and CYP1A2 are cytochrome P 450 enzymes that transform aflatoxins to AFB1 in the liver.
AFB1 is gradually converted into the AFB1 form amidopyrimidine adduct, a cancer-
causing agent. AFB1 metabolites interact with DNA by alkylating bases, causing cell cycle
disruption and mutations in the tumor suppressor gene p53 [90]. The most common muta-
tions in the TP53 tumor suppressor gene (AGG to AGT), which result in the substitution
of arginine for serine, are transversions [91]. When AFB1 binds to DNA, it forms a promu-
tagenic adduct called 8,9 dihydro-8-(N7-guanyl)-9-hydroxy AFB1 (AFB1-N7-Gua), which
can be transformed into secondary byproducts, including an apurinic site and AFB1-form
amidopyrimidine (AFB1-FABY). This adduct causes a transverse mutation from guanine
(G) into thymine (T) (Fig. 3.7).

There is a direct connection between HBV and aflatoxin exposure in HCC risk [92].
Chronic HBV infection activates the cytochrome P450s enzyme, which converts inactive
AFB1 to the mutagenic AFB1—8,9-epoxide, which binds to the guanine base and causes
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mutations [93]. Chronic HBV infection induces hepatic cell necrosis, which raises the risk
of AFBl-induced TP53 mutations. In addition, the oncogenic HBV protein inhibits nuclear
excision repair, which is responsible for removing AFB1-DNA adducts [94].

Others

Chemical solvents (aromatic, chlorinated, toluene, dioxin, xylene, and alicyclic hydro-
carbons) and trichloroethylene and perchloroethylene have been linked to exacerbating
liver damage, which may contribute to the production of HCC [95]. These chemical com-
pounds (dichlorodiphenyltrichloroethane and nitrosamines) can interact with proteins
and nucleic acids and induce a cancer-causing condition in the liver. Because of the toxic-
ity of these metabolites, they can be oxidized to form an increase in ROS output.
Overproduction of ROS activates signaling pathways that promote hepatic inflammation,
apoptosis, necrosis, and HCC growth. They also shorten telomeres and regulate the
CYP3AT1 gene, all of which have oncogenic effects [96,97].

Conclusion

The pathogenesis of HCC is an elaborated and multitiered process that comprises
diverse cellular and molecular signaling pathways. Chronic HBV and HCV infection,
NAFLD/NASH, alcohol intake, aflatoxin, chemical contaminants, and genetic disorders
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are all considered to raise the risk of HCC progression, making it a significant public
health issue. The mechanisms underlying all of this toxicant-induced hepatic carcinogene-
sis are complex and vary depending on the etiologic factors. These toxic agents increase
oxidative stress, inflammation, dysregulation of lipid metabolism, fibrosis, cirrhosis, and
disruption of the host immune system resulted in chromosomal instability and gene
expression changes. Other factors that have been related to the production of HCC
include genomic methylation and miRNA expression. Furthermore, toxic metabolites
formed by these toxicants are likely to function simultaneously and in concert to trigger
cellular signaling, genetic, and epigenetic mechanisms that promote HCC progression.
Understanding the potential mechanisms underlying these HCC-related risk factors will
aid in the development of novel therapeutic strategies to reduce HCC-related morbidity
and mortality. Further studies on the mechanisms and metabolism of carcinogenic agents
that mediate the oncogenic process are needed.
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