To firct the sues on the derment, the 1 presture on each face must ibse evalurked.

$$
P_{1}=P l_{x,}, P_{2}=\left.P\right|_{x+\Delta x} \ldots \text { so m }
$$

force due to graerty $f(\Delta x, \Delta y, \Delta z) \cdot g$ -
$\sum F=0$ (fluid otrest)

$$
\begin{aligned}
& \sum F=0 \\
& \lg g_{y}(\Delta x, \Delta v y, \Delta z)+\left(\left.P\right|_{x}-\left.P\right|_{x+\Delta x) \cdot e_{x} \cdot \Delta y \Delta z} \quad f\left(\left.p\right|_{y}-\left.p\right|_{y+\Delta y}\right)+\left(\left.P\right|_{z}-\left.P\right|_{z+\Delta z}=0\right.\right. \\
& \therefore e_{y}=\Delta r \cdot \Delta z
\end{aligned}
$$

$\lim \Delta x, \Delta y, \Delta z \rightarrow \infty$

$$
\begin{aligned}
& \rho g-\frac{\left.p\right|_{x+\Delta x}-\left.p\right|_{x}}{\Delta x}-\frac{\left.p\right|_{y+\Delta y}-\left.\left.p\right|_{x} e_{x} p\right|_{z+\Delta z}-\|_{z} e_{z}}{\Delta z} \\
& \rho g-\frac{\partial p}{\partial x} \cdot e_{x}-\frac{\partial p}{\partial y} \cdot e_{y}-\frac{\partial p}{\partial z} \cdot e_{z}=0 \\
& \text { or } \rho g-(\nabla p)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { eg }-(\nabla P)=0 \\
& \text { or } \overline{\rho g}=\bar{\nabla} P \text { barts dic } A \quad \nabla \rightarrow \text { del oparator. }
\end{aligned}
$$

Basiet eqn of fhind in staties and thin sayethat. the maximum rate or charge in the pressure oceuss in divection garitation vector

* The isolines ar 1 to the gradiens.
* constame pressuve lures are 1 to graviteliord. * pourt to pons vaitatio wary be ristanied unter. insegogrelin the equ A.
poritit to pown ramatrion in the pressume can be obteinned by intagioling the abare eqn

Examptre of Manometer

Only ing direction pressure is changing

$$
\begin{aligned}
& \therefore \frac{d P}{\frac{d}{d y} y \frac{d P}{d y}} *<e_{y}=-\rho g e y \\
& \text { 9.inequitis blw } \\
& \text { b/w Cod } \\
& \text { } p_{\text {arm- }} \rho_{C}=\text { - lm. } g \cdot d_{2} \\
& \text { enrasedin w } \\
& p_{A}-p_{B}=-\rho_{T} g \cdot d_{1} . \\
& \text { b/W } A \propto B
\end{aligned}
$$

BGC are at. the same level.

$$
P_{B}=P_{C}
$$

$$
\begin{aligned}
& P_{B}=P_{c} \\
\therefore & \frac{P_{A}-P_{\text {amm }}}{}=\rho_{\mathrm{m}} g d_{2}-P_{T} \cdot g \cdot d_{1}
\end{aligned}
$$

goge pressuve
conclussion: Rewant: bebaviour of stalnc. fhem has beer exogmived. Appliedr of Newtoris law hed to the
\rightarrow description
of the poirrt to porit samelon in fluid pressure, from which frree ralolion wre develope9.

Momentum tramifer
Flusid mation
Banc lawt of feund motion:

Equation

1. The law of mas conscuvolion
2. Neutoris II law of mution
3. The tisse law of Thermodyannies

Continuity reqn
monnentum theorem.

Evengy sem.
V) Generol Mrfeculon Wansporn Sequalion for Momentum. Heat \& Mass Trausfor.
and Generd Thmapolpg proputy bolance Transpor Porees, we are concerned of traunter of a property (mass moneanta evernh byis a motecular - Each mssentes havie certaim ahnowl of fedt, wam \& momenstim assicrated wih is

- descreperey in this propentres wimm wreule leads to trampor of these proparties
- more turse les banpor (licauiadl) less dense more tranryars (etaren. mosecular
Genrenal Vraupon. Equalion: All these tharee msseculan trannoos proces are charaterifed in elewentiong seuse
by the same gereet bype of equalion. pate of a raurfer Porcen $=\frac{\text { denving torce }}{\text { resistance }}$ Eßremember $E=\frac{V}{R}$ ohmis lan.
- Need a drining force to overcome resis) aree.
in geveral.

$$
\psi_{2}=-\delta \frac{d \theta^{2}}{d z^{2}}
$$

$\mathrm{H}_{2} \rightarrow$ flux of the untiecoltar propenty being tranfersed.

$$
\frac{\text { flow }}{\text { Area. Time }}
$$

$z \longrightarrow \rightarrow$ direction of trampon
$\delta \longrightarrow$ Propostionolity constans
$\theta \rightarrow$ concentralion or teat property (ireat, momer) m. v
for steody state (S.s.)

$$
\psi_{2}=\text { constant }
$$

$$
\begin{aligned}
& S=a^{1} \\
& \text { Qz... } \int_{z_{1}}^{z_{2}} d z=-\delta \int_{\theta_{1}}^{\theta_{2}} d \theta \\
& \psi_{z}^{v}=\sum^{v} \delta \frac{\left(\theta_{2}^{v}-v_{1}^{v}\right)}{z_{2}-z_{1}^{2}} v \\
& \theta \uparrow\left[\frac{\theta_{1}^{-}}{\frac{\theta_{1}}{\vdots \frac{\mu z}{f \ln x}} \vdots} \frac{\theta_{2}^{2}}{z_{1}}\right.
\end{aligned}
$$

General propury bolance for $\quad z \longrightarrow$
Unsready rtare

To account for the rioputy being ramported in the *?

$$
\begin{aligned}
& (\text { rateicis })+\binom{\text { ralie of }}{\text { gencein }} \\
& \begin{array}{c}
\left.\left.o{ }^{4} \text { (rate ous }\right)+\begin{array}{c}
\text { Accumalan } \\
0 \\
0
\end{array}\right) \\
\%
\end{array} \\
& u \rightarrow r: v:
\end{aligned}
$$

Assume the $x^{n o l}$ area

$$
\begin{gathered}
\text { of the etenct in } 1-(\Delta \cdot T) \\
\therefore \text { vtume }=(\Delta \cdot
\end{gathered}
$$

* entiro system, a geneval poperty b alamen or comsertion eqn for the propenty or unstedy stom is read.

$$
\pm\left.\cdot \psi\right|_{z} ^{\prime}+R^{\frac{p u p}{A_{1} T 0^{*}}}=\left.\psi\right|_{z+\Delta \dot{z}^{\prime}}+\frac{\partial \theta}{\partial \bar{t}} \cdot(\Delta z \cdot 1)
$$

$\theta \rightarrow$ conc $/ \operatorname{ms}^{3}$ vr.

Mivide by Δz
$R \rightarrow$ genechdron/ms $\mathrm{m}_{\text {vor }}$.

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}=R-\left(\frac{\left.\psi\right|_{z+\Delta z}-\left.\psi\right|_{z}}{\Delta z}\right) \\
& \frac{\partial \theta}{\partial t}=R-\frac{\partial \psi}{\partial z} \quad \Delta z \rightarrow 0 L
\end{aligned}
$$

Now

$$
\psi=-\delta \frac{\partial \theta}{\partial z}
$$

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}=R+\delta \frac{\partial^{2} \theta}{\partial z} \\
& \frac{\partial \theta}{\partial t}-\delta \frac{\partial^{2} \theta}{\partial z^{2}}=R
\end{aligned}
$$

$$
\delta \rightarrow \text { conotars) }
$$

If No greneralion then

These are genenal equolion for the consermation of momentum, thernal evergy or mass and arll Ii is applicalsti onty tor mitecular brampen and donot condides other hainp, 2

Simalasty in momentum, heat s man pausu geankeo

Momentern transpor a Neations law: Skil
consder a thed has x diested monat
Momenternn

$$
v_{x, p} \rightarrow \frac{\text { momation }}{m^{3}} \operatorname{in} x \rightarrow
$$

Thin monsentur due to segpence in in monnentum of differen layes, is bing
 actually due to ranclom mocion of worlecules inz

$$
\begin{aligned}
& \tau_{2 x}=-v \frac{d\left(v_{x} \cdot P\right)}{d z} \text { d/a fictionstu (ivocing and } \\
& \text { b/w faster moving a }
\end{aligned}
$$

\longrightarrow binemohe $\left.\right|_{\text {momaud }} ^{\text {defousit }}$ viswely m / s
$\tau_{z} x \rightarrow$ flue of x directed moment in the z dinection
$\nu \rightarrow$ momentun doffusidy $=(P / \rho)$
Heat Transfer \& Founces law:. Fourieris law tor urteulem trampor of heot of forleet conduction inathidfeg solid forles

$$
\frac{q_{s}}{A}=-k \frac{d \pi}{d z}
$$

if we have constanl $P C_{P}$
Then

$$
\left.\frac{q_{s}}{A}=-\frac{k}{\rho c_{p}}\right) \cdot\left(\frac{d\left(\rho p_{p} T\right)}{d z}\right)
$$

$P C T \rightarrow$ concertralion of beat or thenwed evergy
Trounfor is due to the molreculan diffurion when there is teunestins gradientein flind equal numbersor monecoles biffuse in eoch divection b/w hot a und region

Overall Mass Bolance and Conntimn'ty aquation

* As a first step in the sirution of flow problem puncipse of wass consunation is onpplied.
* Conservation laws are defmad for the sys'ma System: Meemss the coltrection of wathon on bised idenlety
* In flow problenis idendary of parficles are wor firned therefore syrnerns can wot be defined as jueb contros Nrume concept is lased.
Ex. of system piston-cyhuder form thermodynamies

controt volumex is a region firsed in space throngh which frrid flows.

Fig. contril volume for flow through conduitr. O verals mars bolance equation for fluid flow:.
Hass bolance equalion for a geveral coutrol vilume. where wo mars is being generated is as follows.
(rate of wars out (rate of mass) rate of wars acc.
$v \cdot$
consider a general contorn vilume located in a flow field (Ruld refersto quanty Hefred as air a give ryin)
here youting explown Eithamam \& lagraigons apporoat or detwir field.

(20)

Consider the differential area $d A$ on the control surface.
rate of mars efflux from this elemeontel area

$$
=(\rho \cdot v d A \cos x)
$$

$d A \cos ^{2} \alpha$ is the projection of $d A$ over vertical plane (normal to velocity vector)

$$
\rho(v(A \cos x)=\rho(v \cdot n) d A
$$

Therefore for the entire surface A net rate of mass out flout across the control surface or not mass efflux in (kg/s) from the entire contr volume v

$$
\begin{aligned}
& \text { net mass effie from }=\iint_{A} v \rho \cos \alpha d A \\
& =\int_{A} f(\bar{v} \cdot n) d A
\end{aligned}
$$

Note if mass is entering the c. C.v. $\alpha>90^{\circ}$ hence $\cos \alpha=$ Give (i. econ waugh hot -if mas is flowing out $\alpha \sum 90^{\circ}$ (mass efflux).

Rate if accunulalios of mass wither C.N. "V"

$$
\begin{aligned}
& 8 \text { arcumbalion } \sqrt{2} \text { mass } \int_{V} \frac{f^{2} d V}{\partial t}=\frac{d M}{d t} \\
& =\frac{\partial}{2}
\end{aligned}
$$

$M \rightarrow$ mass of the thin in the volume in nodus General form of the eq"

$$
\begin{aligned}
& \text { meal form of the eq" } \\
& \iint_{A} f\left(\bar{v} \cdot \dot{n}^{n}\right) d A+\frac{\partial}{\partial t} \iiint_{V} f d V=\frac{0}{\text { Lino geverem }} \\
& \text { in e flow is steady }
\end{aligned}
$$

* Consider a cease where the flow is steady and nounal to live control single. $A_{1} \& A_{2}$

$$
\begin{aligned}
& \text { af } A_{1}, \alpha_{1}=180^{\circ} \\
& \iint_{A} v \cos \alpha d A=v_{2} \rho_{2} A_{2}-v_{1} \rho_{1} A_{1}=0 S
\end{aligned}
$$

$$
\therefore v_{2} f_{2} A_{2}=v_{1} \rho_{1} A_{1}
$$

PTO.

$$
\begin{aligned}
& \text { af } A_{1}, \alpha_{1}=180^{\circ} \text { at } A_{2}{ }^{\prime} \alpha_{2}=0^{\circ}
\end{aligned}
$$

$20 b$
overall
for a compos 1bdance sean, general mars bolaver eau can be extended as

$$
m_{m_{2}}^{\prime}-m_{i 1}+\frac{d M_{i}}{d t}=R_{i}
$$

$w_{i} \rightarrow$ component flow rite
Mi $\rightarrow \mathrm{kg}$ of component in lye eN.
Eularian \& Lagroungian approaches, (welty 32)
Eulariam and. Lagrangian: The term field ref to a quarts. Devin an a function of position an time purger a given regor:

There ale two difjuent fans of mapresentiy felt in theol mechanics \longrightarrow Lagrange for
particle identily is tixeie and particle cosonnates are functions of time
\rightarrow Enter form: The value of a thant variable at \& a givens point ans of a given time. In furetiond form.

$$
v=v(x, y, z, t)
$$

Where x, y, z and t are all independent variable. For a particular $\left(x_{1}, y_{1}, z_{1}\right)$ and t_{1} the above equation gives the value of velocity of the field at that position and at time t_{1}. This is most common form of presenting the velcoity field.
comider siexdy state flow $\frac{d(l)}{d t} \longrightarrow 0$

$$
\begin{aligned}
& \text { consider siexdy shate fow } \begin{aligned}
& \iint_{A} \rho v \cos \alpha d A=\iint_{A_{2}} v \rho \cos x_{2} d A+\iint_{A_{1}} \rho v \cos \alpha_{1} d A \\
&=v_{2} \rho_{2} A_{2}+\rho_{1} v_{1} A_{1}=0 \\
&
\end{aligned}
\end{aligned}
$$

\because at $A_{1} \alpha_{1}=180^{\circ}$ ar $A_{2} \alpha_{2}=0^{\circ}$

$$
v_{2} f_{2} A_{2}=l_{1} N_{1} A_{1}
$$

OVerall Mans bolance in a Shirred Tante

invitiol 500 ks sala containuly $t=0 \mathrm{~V}, 10 \%$ Solt

$$
\begin{aligned}
& \iint_{A} \frac{\operatorname{locos} x}{} d A=m_{2}-m_{1}=5-10 \leq-5 \operatorname{cog} / \| / a_{1} \\
& \frac{d M^{2}}{d r}=\frac{\partial}{\partial t} \iiint_{V} \rho d w^{v}
\end{aligned}
$$

Povers of Cqutpment Derign - II
B-tance eqm

$$
\begin{aligned}
& -57 \frac{d M}{d t}=0 \\
& \frac{d M}{d t}=5 \\
& \int_{500}^{M}=5 \int_{0}^{t} \\
& M=5 t+500
\end{aligned}
$$

oisen all balance
confponters bolames

$$
\begin{align*}
\iint_{A} v \rho \cos \alpha d A & =5\left(w_{A}\right)-10(0.2) \tag{1}\\
& =5 w_{A}-2 \quad v o 7 \mathrm{~m}
\end{align*}
$$

$$
\begin{aligned}
\frac{\partial}{\partial t} \iiint_{V} \rho d N & =\frac{d}{d t}\left(M w_{A}\right) \\
& =\frac{M d w_{A}}{\sqrt{t}}
\end{aligned}
$$

(1) +2

$$
5 w_{A-2}+M \frac{d w_{A}}{d t}+w_{A} \frac{d M}{d t}=0
$$

$$
\begin{equation*}
=\frac{m d w_{A}}{d b}+w_{A} \frac{d M}{d t} \text { ks Sols } \frac{h}{d M} \tag{2}
\end{equation*}
$$

pust the value of M \& solure for ω_{r}
B.C

$$
\left.\begin{array}{r}
w_{A}=0.1 \text { an } A=0, \\
\quad w_{A}=\omega_{A} \text { ot } A=t
\end{array}\right\}
$$

$$
\begin{aligned}
& \int_{\omega_{A}=0.1}^{w_{A}} \frac{d w_{A}}{2-10 \omega_{A}}=\int_{t=0}^{t} \frac{d t}{500+5 t} \\
& \frac{-1}{10} \ln \left(\frac{2-10 \omega_{A}}{1}\right)=\frac{1}{5} \ln \left(\frac{500+5 t}{500}\right) \\
& \frac{\omega_{A}=-0.1\left(\frac{100}{100+t}\right)^{2}+0.20}{}
\end{aligned}
$$

- Aug velociry to use in oven all Man talarn

$$
V_{\text {ar }}=\frac{1}{A} \iint_{A} d d A
$$

if v varies oue the $x^{\text {not }}$ wrea

$$
\begin{aligned}
& \text { ang } /\left(\frac{1}{A}\right)_{A} \\
& \text { angor }
\end{aligned}
$$

bulk voity for a sinface oven which vis normol to A and Levsity pis astumes constant.

Ep. Varnation of velrcity oueves conmol. cuface end Avg reloring.
considies evawngremisle thind f ρ iscorrtal Hows throcyle a cinclar pipe of rablem

$$
\begin{aligned}
& v=\operatorname{vmas}\left(\operatorname{ir}\left(\frac{r}{R}\right)^{2} \text {) (} \begin{array}{l}
\text { parabotic } \\
\text { promifor } \\
\text { laminar flow) }
\end{array}\right. \\
& \operatorname{var}=\frac{\int_{0}^{2 \pi} \int_{0}^{R} \operatorname{raxax}\left(1-\left(\frac{r}{R}\right)^{2}\right) r d r d \theta}{\pi R^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Varse } \frac{V_{\text {max }}}{\pi R^{4}} \int_{0}^{2 \pi} \int_{0}^{R}\left(R^{2}-r^{2}\right) r d r d \theta \\
& V a v=\frac{V_{\text {mar }}}{\pi R^{2}}(2 R-0)\left(\frac{R^{4}}{2}-\frac{R^{4}}{4}\right) \\
& V \text { Vav }=\frac{V_{\text {uns }}}{2}
\end{aligned}
$$

Overall Evergy Bolance
law of conteuvalion of evergy combined with the first law of themodymin First of law of themo.

$$
\Delta E=q-\omega
$$

real-
$\varepsilon \rightarrow \frac{\text { Total Energy: }}{\text { man of thad }} \quad Q \rightarrow$ Asimed/unam of $w^{\sim} \rightarrow$ work of M kind, done / man or tevid on ennowis
oreral brengy bolavce eq" ralke of entiry out - ratob entrity in \# rale ot entify necumbelm entily $=$ energy $=0^{-}$
$f($ Artehal lanefic,
Entergy present posikon transblional in a systan satalound wotion mais Intent...... all other as evegy bording evergy)

Accum wotion $\left.{ }^{2}=\frac{\partial}{\partial t} \iiint(U)+\frac{\operatorname{lv} 2^{2}}{2}+7 g\right)$ pedv'
Apout from $y, \frac{f^{2}}{2}$, \& $7 g$ evergy is trampecred as the wass theossints and Qent of the C.V.. Thes pressure-V $\sqrt{0}$ chengine parunir maass of fhand is PV combining the 'U'\& PV'tors

$$
H^{2}=U+P V
$$

\therefore Total enengy conted with a unit wan $=H^{H^{2}}+\frac{y^{2}}{2}+z^{2} g$ Net evergy effluiv from commlvime

$$
=\iint_{A}\left(\begin{array}{c}
\left.H+\frac{v^{2}}{2}+7 g\right) \cdot \text { ev. wio.dA } \\
\dot{d}^{2} A \times \text { are aseastier. }
\end{array}\right.
$$

This accontifor all everyy assrivioled worls mass in the systam and mosing accors Im' bowlay in the ewnity iodance.

Now consiabs heal and work eversy.
(a) $q \rightarrow$ rear rawfened pen unit trime. are oss the bowiding 15 the fluid

(a) $q \rightarrow$ tear is the fhid

Thus. we base, overall enarys balance $=$

$$
\begin{aligned}
& \iint_{A}\left(H+\frac{v}{2}+z g\right) \stackrel{\varphi}{v}^{2} \cos \alpha d A+\frac{\partial}{\partial t} \iiint\left(u+\frac{v^{2}}{2}+z g\right) \cdot \tan \\
& =q-\frac{V_{w_{s}}^{2}}{L} \dot{w_{2}}
\end{aligned}
$$

$\dot{\omega}_{\text {s worn }}$ the dore 'by the fhider
overoll burengy bolance, and stready ntake flom

$$
\begin{aligned}
& =q-\dot{w}_{s}
\end{aligned}
$$

forsteady flow $m_{2}=\overline{m_{1}}=$ Pbasedor per inil:time

$$
\sqrt{H_{2}+H_{1}+\sum_{2}\left(v_{2}^{2}-v_{1}^{2} a v\right)+\left(z_{2}-z\right) g=\Phi-v y}
$$

$\alpha \rightarrow$ kinetic - bnergy velouty curreidim
for varous flow in pupes faeror
α laminar $\rightarrow K^{2}$
α tumbutent $\Rightarrow 1,0$
Knetic - brenyy velority crrreation factor, α

$$
\begin{aligned}
& \begin{array}{l}
\alpha=0 \\
\text { numpsere sere }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\frac{k \cdot \beta}{m}=\frac{1}{2} \cdot \frac{1}{\operatorname{Var}} \cdot \frac{1}{A} \iint \underline{v}^{3} d A\right.} \\
& =\frac{3}{2 \operatorname{Van}}=\frac{\operatorname{var}^{3}}{2 \mathrm{Vav}} . \\
& \Rightarrow \frac{\left(V^{3}\right)_{w}(\operatorname{Vav})^{2}}{2 \operatorname{Var}(\operatorname{Vav})^{2}}=\frac{v^{2} a v}{2 \alpha} \quad \text { where } \alpha=\frac{V^{3}}{v^{3} a v}
\end{aligned}
$$

\$ for lam nor flow $x=0.5$?
Use

$$
v=2 \operatorname{var}\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

wre $A=M R^{2} \cdot d A=r d r d o$
in contenor corronates $d A=d x . d y$ butis polan coorsulies (or pise)

$$
\begin{aligned}
& d A=r d r \cdot d \theta \\
& A=\pi R^{2}
\end{aligned}
$$

* For Turkolent flow

$$
\begin{aligned}
& \text { Turbolent flow } \\
& v=V \operatorname{mas}\left(\frac{R-r}{R}\right)^{\text {分 }} \\
& \alpha \Leftrightarrow 0.90-0.99
\end{aligned}
$$

$\alpha \approx 1.0$ for tinbubens flows

Nhe: If thereeis lignoficat chargre in enthelfy or aprrenolsle bent-is addied or riemoved PE. T Kie. frime can be sefely negleated fromptart eqn
See example $\frac{2.7-1}{-2} \quad$ (freameopshish)

Orenal mrechamical Evergy Rotavee eqn:
(We-are more concemed with the Mee howich encrgy) Mechanicol evengy in a from of evecry than ${ }_{5}{ }^{3}$ Can be converter into work.

Evrergry corrurted is heot / entiencl evaror is wor wore or a lops in meehanical enengy waich is caused by frithinnt rerbitare co flow. For s.s. How whem nithin marses from. intet w oultel, the botch wonc done by the fluid, W 'is

$$
\begin{aligned}
& \text { woses / man }
\end{aligned}
$$

form firm- law of themm dyuranies flunt Note: $\sum F$ is octucule a lots Ac-is Mechanted snergy due io frictional
Note:

$$
\Delta U=Q-w^{1}
$$

aresistancelto flow.

$$
\Delta H=\Delta U+\Delta P U
$$

$$
\begin{aligned}
& \therefore \quad \Delta H=\Delta U+\int_{V_{1}}^{V_{2} p d v / \int_{P_{1}}^{P_{2}} v d p} \begin{array}{l}
\text { or } \\
\Delta H+\sum F \\
W^{\prime}+\sum F+\int_{p_{1}}^{P_{2}} v d p
\end{array} \\
& \Delta H=Q+\Sigma F+\int_{P_{1}}^{P_{2}} V d P \rightarrow \text { Substicuting } \\
& \text { S.S. ave all anempy bolm. } \\
& \sum_{\alpha}\left[v_{2}^{2} a w-v_{1}^{2} a v\right]+g\left(z_{2}-z_{1}\right)+\int_{p_{1}}^{p_{2}} \frac{d p}{\rho}+\sum F_{=}+w_{0}
\end{aligned}
$$

Which is the desiled overats
orienall meehomierl

$$
v=1 / p
$$ Eveny bolarar regM

for enconpressible thind $\left\lvert\, \int_{P_{1}}^{P_{2}} \frac{d P}{\rho}=\frac{P_{2}-P_{1}}{\rho}\right.$
and the equ becomes

$$
\begin{aligned}
& \frac{1}{2 \alpha}\left[v_{2}^{2} \text { av }-v_{1}^{2} \text { ar }\right]+g\left(z_{2}-z_{1}\right)+\frac{p_{2}+p_{1}}{p}+\sum f+w_{s}=0 \\
& \text { s }{ }^{2} w l+e=12.7-4 / 2.7-5
\end{aligned}
$$

\$ Bervoulli Equation for Meahemior Everyy Balarnce: no frictional losses.

$$
\text { wo parid } \leftarrow w_{\rho}=0, \quad \sum F=0
$$ lase

evergyed thes fro tcuabeilent flowb

$$
z_{1} g+\frac{v_{1}^{2} a w}{2}+\frac{p_{1}}{F}=z_{2} y+\frac{v_{2}^{2} a v}{2}+\frac{p_{2}}{p}
$$

Flow from a wozglie in a tane:

from sermoulus equ
af $p+2$ pressure is stame as Pl^{3} ?

$$
P_{3}=P_{2}
$$

$z_{1}=z_{2}, \therefore \quad \alpha=1,01$ tunbsutens

$$
\frac{v_{1}^{2}}{2}+\frac{P_{1}-P_{2}}{p}=\frac{v_{2}^{2}}{2}
$$

$\therefore V_{1}=0, \ldots$ tamkes very lange

$$
V_{2}=\sqrt{2 g H}
$$

(Q) $\frac{2.7-6}{72 \text {-Gearke }}$ A liowid with a constany density $\rho \mathrm{kg} / \mathrm{ki}$ is flowing at an chranourn velocity vim/s through a horizontal pipe of chos-sectional Area $A_{1} \mathrm{w}^{2}$ at a pressure $\mathrm{p}_{1} \mathrm{~N} / \mathrm{m}^{2}$, and then it prasses to a suction of the pipe in which the aree res reduced gradually to $A_{2} \mathrm{~m}^{2}$ and the pressure is p_{2}. Assenning no fricdion botse, coleulate velocily v_{1} and v_{2} if the pressure difference $\left(p_{1}-r_{2}\right)$ tes measured.
SOn"

$$
f_{1}=\rho_{2}=\rho \quad \therefore \quad v_{2}=\frac{v_{1} A_{2}}{A_{2}}
$$

$z_{1}=z_{2}=0$ for thonizontal p-pes Now from Benoullise Gq^{h}

$$
\begin{aligned}
& \text { trom Benoulliae requ } \\
& 0+\frac{v^{2}}{2}+\frac{p_{1}}{\rho}=0+\frac{v_{1}^{2} A_{1}^{2} / A_{2}^{2}}{2}+\frac{p_{2}}{p}
\end{aligned}
$$

con Annuely - a^{μ}

$$
\left(\begin{array}{l}
v_{1}=\sqrt{\frac{\left(t_{1}-P_{2}\right)}{\rho} \cdot \frac{2}{\left[\left(\frac{A_{1}}{A_{2}}\right)^{2}-1\right]}} \\
v_{2}=v_{1} A_{1}
\end{array}\right.
$$

$$
v_{2}=\frac{v_{1} A_{1}}{A_{2}}-
$$

Overall momentum Bolaree:
monnentum. \rightarrow veector mass, enrecyy \rightarrow scalon

Newtrn's secund law

$$
\sum f=\frac{d}{d t}(m \cdot \bar{v})=\frac{d}{d t} \bar{p}
$$

$\bar{p} \rightarrow$ Toital livears momentum of the syniem.

Equalims for the consevation of momeretums w.r.t. io C.V.

$$
\begin{aligned}
& \text { C.v. } \\
& \text { Luwof forces } \\
& \text { activg on } \\
& \text { civ. }
\end{aligned}
$$

Civ.

Same as regenexotion

+ rate of ace. of momentum in contro, whure.
* ì extrernal forces are absens - uvi is consenved otheswntet is witonserviedos it ingenereted by the esternal force. chet The firts liso lires on Rrtri girses the rate of monentum offlus.
for a swall elementy area dA. on the C.V. Surface
rate os moonreateme eff hers $=$

$$
=\underline{\rho \bar{v}(\bar{v} \cdot \bar{n}) d A}
$$

x net momientum efflus from.

$$
c \cdot v .=\iint_{A} \bar{v}(\rho \cdot v) \cos \alpha d A=\iint_{A} \rho \bar{v}(\bar{v} \cdot \bar{n}) d A
$$

rote of aecumulalion of momentim ineiv.

$$
\begin{array}{r}
=\frac{\partial}{\partial t} \iiint_{V} \rho \vec{v} d v \\
\therefore \dot{r} F=\iint_{n} \rho \bar{v}(\bar{u} \cdot \bar{n}) d A+\frac{\partial}{\partial t} \iiint_{V} \rho \bar{v} d v
\end{array}
$$

If may componenk in any direct ${ }^{\text {m }}$ say x direction

$$
\begin{aligned}
\sum F_{x} & =\iint_{A} \rho \bar{v}_{x}(\bar{v} \cdot \tilde{x}) d A+\frac{\partial}{\partial t} \iiint^{A} \rho \dot{v}_{x} d v \\
& =\int_{-A}^{A} \bar{v}_{x} \rho \bar{v} \cos \alpha d A+\frac{\partial}{\partial t} \iint_{V} \rho \bar{v}_{x} d V
\end{aligned}
$$

EFy \rightarrow Body force (srantiononal force)-ixy

$$
\text { EFx }\left[\begin{array}{l}
\text { Body force } \\
\rightarrow \text { Surfaie force (} \\
\rightarrow \text { Pressure force } \\
\text { Nretion force }
\end{array}\right.
$$

Surgoufore: - In coses wheve, the con tron suatace ents (reaction)

$$
\begin{aligned}
\sum F_{>} & =F \times g+F \times s+F \times p+R_{x} \\
& =\iint_{A} v_{x}(\rho v) \cdot \cos x d A+\frac{\partial}{2+} \iiint_{V} \rho_{v_{x}} d v
\end{aligned}
$$

Overal mornentum balance ins flow syptiem in onve divedinin:
corsidier the steady stare flow'

$$
\begin{array}{r}
\sum F_{x}=F_{x}+F_{x p}+F_{x s}+R_{x}=\iint_{A} v_{x}\left(p x_{x}\right) \cos x d A \\
\because v=v_{x}
\end{array}
$$

fowinnedirelth

$$
\begin{equation*}
\text { let } \cos x= \pm 1.04 \tag{33}
\end{equation*}
$$

Now $\quad P A=\frac{m}{V a N_{1}} \quad \rho=\frac{m}{A \cdot v a w}$

$$
\therefore \Sigma F=m \cdot \frac{\left.\left(v_{1}\right)^{2}\right)^{2}}{V_{x_{2}} \text { aw }}-m \frac{\left(v_{x_{1}}\right)^{2} a w}{v_{x_{1}} a w}
$$

If the velocity is Nov ives actors the surface

in that case

$$
\left(V_{*}^{2}\right)_{a v}=\frac{1}{A} \iint_{A} V_{x}^{2} \cdot d A-
$$

define momentum velocity correction foutor.

$$
\left(\frac{V_{x} \text { ow }}{\beta}=\frac{\left(V_{x}^{2}\right)_{\text {av }}}{V_{x} \text { aw }} \text {, or } \beta=\frac{\left(V_{x} a v\right)^{2}}{\left(V_{x}^{2}\right)_{o w}}\right.
$$

$\beta \rightarrow 0.95-0.99^{\text {' For turbeatenti-曽 }}$
$\rightarrow 3 / 4$ (47 ? for lamina flow

For turbulent flow we eam safely

$$
\text { right } \frac{\left(v_{n}\right)^{2} a w_{1}}{v_{x} \text { aw }}=\frac{\left(v_{n}\right. \text { aw) }}{\beta \rightarrow 1}=\frac{(v) L}{\text { as we are }}
$$ considering dropping x for one dimension flow $V_{x}=V \quad r F+F$ orly ene direction

$$
\begin{align*}
\therefore \Sigma F & =m\left(\frac{r_{1}}{\beta}\right)-m\left(\frac{r_{1}}{\beta}\right) \quad \text { fromean } 1 \\
& \Sigma F=r_{y} \lambda^{0}+f_{y} \vec{s}^{0}+f_{x p}+R_{x} .
\end{align*}
$$

$R_{\infty} \rightarrow$ Force exedend by the solid on the. thend
Fxg $\rightarrow 0$ (it acters orly in $\begin{gathered}\text { and direstion } \\ \text { a we ase conndien radireat }\end{gathered}$ A we are constiey i dirent.
Fos \rightarrow (friction firce) Usenally very swall
$\operatorname{Retr} \beta \rightarrow$ torce $1.0 \quad$ (wnsider) -

$$
\begin{aligned}
& \frac{1}{F_{x P}+R_{s}=m v_{2}-m v_{1}} \\
& f \times P=P_{1} A_{1}-P_{2} A_{2} \text { where Expi ithe force caused by pressure a cefing over } \\
& \therefore R_{x}=m v_{2}-m v_{1}+P_{2} A_{2}-P_{1} A_{1}
\end{aligned}
$$

if fluid resests mesiure on the sothe: (reaction force) ${R_{x}}_{x}$ has $\sigma_{\text {ine liga. }}$

Momentumn Velocity correction Fouror β for Lamilvas flow:

$$
\frac{\left(v_{0}^{2}\right) a v}{V_{\text {aN }}}=\frac{v_{\text {ow }}}{\beta}-
$$

$$
\therefore \beta=\frac{\left(v^{2} a w\right)^{2}}{\left(v^{2}\right) o w}
$$

Lef's find Bi for laminas fow 2

$$
\begin{aligned}
& \beta=\left(v^{2} \text { fov }=\frac{1}{A} \int_{A} v^{2} d A\right. \\
& A=\pi R^{2}, \quad d A=\operatorname{rdrdt} \theta \\
& \left(v^{2}\right)_{a v}=\frac{1}{\pi R^{2}} \int_{0}^{2 \pi} \int_{0}^{R}\left[\frac{C}{2 \sqrt{\sigma w}}\left(1-\frac{r^{2}}{R^{2}}\right)\right]^{2} r d r d o \\
& =\frac{(2 \pi) 2^{2} \nu^{2} a^{2}}{\pi R^{2}} \int_{0}^{R} \frac{\left(R^{2}-r^{2}\right)^{2}}{R^{4}} r d r
\end{aligned}
$$

Note for Laminnon thew

$$
\begin{aligned}
& v=V_{\text {was }}\left[\operatorname{ir}\left(\frac{r}{R}\right)^{2}\right] \\
& \text { clso } \quad V_{\text {av }}=\frac{V_{\text {max }}}{2} \\
& \left(v^{2}\right)_{a v}=\frac{8 v^{2} a v}{R^{6}}\left(\frac{R^{6}}{2}-\frac{R^{6}}{2}+\frac{R^{6}}{6}\right) \\
& =\frac{4}{3} V_{a}^{2} \quad \beta=\frac{C_{\text {vau }} \beta^{2}}{\left(v^{2} b r\right.}=\frac{3}{4} \\
& \Rightarrow \quad \frac{3}{4}=\frac{(v a v)^{2}}{\left(v^{2}\right)_{a v}}=\beta \quad 1
\end{aligned}
$$

Oresalt monvestum b-lonee in lus sérection? Applicolon of unomurtun bolance eqn:

Assumare s.s thou $\&$ no friction ferce ire fris $=0$

$$
\begin{aligned}
\because \rho A & =\frac{m}{v_{a v}}=\frac{m\left(v_{2}^{2}\right) a v}{v_{2} a w} \cos \alpha_{2}-\frac{m\left(v_{1}^{2}\right) a_{1}}{v_{1} a_{v}} \\
\rho & =\frac{m}{A} \sqrt{v_{0}}
\end{aligned}
$$

$F_{t}{ }^{2}=P_{1} A \cos \alpha-P_{2} A_{2} \cos \alpha_{2}$.
$R_{7}^{L}=P_{2} A_{2} \cos \alpha_{2}-P_{1} A_{1} \cos \alpha_{1}+m v_{2} \cos \alpha_{2}-m v_{1} \cos \alpha_{1}$ $\frac{v_{\theta}^{2} a v}{\left(v_{0} a v\right)}=\frac{v_{a}=v}{\beta}$
$\beta=1.0$

For y direetion

$$
\begin{aligned}
R_{y}=m^{2} \sin \alpha_{2}-m+1 \sin \alpha_{1} & +P_{2} A_{2}+x_{2}-P_{1} A_{1} \operatorname{lin} x_{1} \\
& +m_{1} g
\end{aligned}
$$

$m_{t} \rightarrow$ totel mass of flud $F y z=-w+g$ wilpiar cor

Flow Though a pige bent.

$$
\alpha_{1}=0
$$

$$
\begin{array}{r}
R_{0}=m v_{2} \cos \alpha_{2}-m v_{1}+P_{2} A_{2} \cos \alpha_{2}-P_{1} A_{1} \\
R_{4}=m v_{2} \sin \alpha_{2}-P_{2} A_{2} \sin \alpha_{2}-0 \\
+m g_{2}
\end{array}
$$

$$
R_{y}=m v_{2} \sin x_{2}-P_{2} A_{2} \sin \alpha_{2}+m g
$$

$$
|R|=\sqrt{R_{x}^{2}+R_{y}^{2}}
$$

magnitude of resultof

$$
\theta=\operatorname{acctan}(\beta y)
$$

$$
\sqrt{\text { UNIT-I }} \frac{\text { Tramp or phenomena }}{}
$$

1) Nif. II

Nestons law of viliosity.
Consider the flow between two laroge plofes of area A

Fluid inibially ofreet
$t=0$ lower plate
Sot in unstion wiln velocily "v"

velocity beiildup in unitedy flow

Final velocity sestribution-u steady flow

Fow is essertioly laminar
Once the stealy statre has keen attained a corstarts force 'f.' will be required to mamain the motion of the lower plate.
then, we con write as

$$
\frac{F}{A}=\mu \frac{V}{Y}
$$

Conslant of proportinolly ealled vis cosity
for antiproportionality of Y consides thi veanpfer of livo slide b/w which a thin layer of thides piaced. Then et repures langer force to componed to when the fhind thictuens blw plote is more..
(37b)
ber-
$\frac{F}{A}=\tau_{y x} \rightarrow$ Force is x drection ' y ' dixice I to

It es understood that thisforce is erected by the fhid of lestes y on the flund of grealer ' y '. as sereh sepleree whe $\frac{v}{y}=-\frac{d v_{x}}{d y}$
Therefore

$$
r_{y x}=-\mu \frac{d v_{x}}{d y}
$$

Ahove eqn which stolis that the anch force pen enit area is α to the regotivp of thi velocity gradient is colled veitions law of orscosity" "
of is applicaste for liquids wieh insteculion weight <5.000, called 'Neutronich Finid' $\square(\mu$ is constant- at constant Temy
Alternotely drove eq" can be eiveterpretes as

arser of mogntede for air $-20^{\circ} \mathrm{C}-1.8 \times 10^{-5} \mathrm{Pa.S}$.
glyeur - : Pa.s.
in caases momentum-is tranported due l_{0} tree motecolar collistion
liqni-l, \rightarrow momentum is tranfferred dere os intermbecular fores that pairs of mokecules] experience as they intercet with thein bis neighbous.
\therefore Generalization of Newtons law of viscosity.

$$
\begin{aligned}
& \text { Tits j } \rightarrow \text { forcidiver io }
\end{aligned}
$$

P. Consider a general flow pattern such theol

$$
\begin{aligned}
& v_{x}=v_{x}(x, y, z, t) \\
& v_{y}=v_{y}(x, y, z, t) \\
& v_{z}=v_{z}(x, y, z, t)
\end{aligned}
$$

Pressure force wall always be 1 to the exposed Surface, $\bar{P} \delta_{x}, \overrightarrow{S y}$ \& $P \delta z$ are pressure forces in the x, y of z direction respectively $\delta_{i} \rightarrow$ is a crit- vector.'
($\tau_{x}, \tau_{1}, \tau_{z}$)
viscous forces eons into play when their are velocity gradient, within the foin. In general they are neither 1 nor 11 to it.
Each of the riscons forces. T_{x}, T_{y} \& T_{z} have componewter liketarixy i tray..
sum of the forces acting on the thee faces shown above cause wind en as
$\pi_{i j} \rightarrow$ molecular stress
Sijz kronecker delta $j=$ hen $i=j, \quad$ sij$=1$
$i \neq j, S_{i j}=01$.
$i \& j$ maybe x, or z I \rightarrow tan git comp oneal. $^{\text {it }}$
(3) 3
$\pi_{x x}, \pi_{y y}, \pi_{7 t}$ me celled nomal stresses
$\pi_{x y}=\pi_{y x}, \tau_{y_{7}}=\tau_{7 y} \ldots$. wie colked shearsten. to avoid congiunion $\pi \rightarrow$ wis rewigh friven teupor

- How are these stressicikalaked ton velocitey gsadient.

$$
\begin{array}{r}
\tau_{i j}=-\left.\Sigma_{k} \Sigma_{l}\right|_{i j k l} \frac{\partial v_{x}}{\partial x_{l}} \\
\text { where } i_{i} j, u_{1}
\end{array}
$$

where $i j, u_{1} l_{1}$ way have values $1,2,3$
Mij́kl \rightarrow have si quantilies (34)
Restinetions in gonetualization

- If the fluid iss under pure rotation no $=G_{i}$ viscons force is present. This ureans be a symumestic contiviction of the velocity gradenets Trals means if i \& \hat{g} are interchanged, the combenation of velocity gradients semanss inchanged, Ir ean be shown that the only symmermie hineas combinalions of velurity gradients ane

$$
\left(\frac{\partial v_{j}}{\partial x_{i}}+\frac{\partial v_{i}}{\partial x_{j}}\right) \&\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{i}}{\partial y}+\frac{\partial v_{z}}{\partial z}\right) f_{i j}
$$

- Considier lue flud es inotropic

$$
r_{i j}=A\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)+B\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{2 y}+\frac{\partial v_{z}}{\partial q}\right)_{i j}
$$

we have thus seeduced thie muntaer of viscosity wefficienl from 81 to 2 !
$37 e$
For the simple frow considpered here theory suggest thest

$$
\begin{aligned}
& A=-\mu(2 / 3 \mu-k) \\
& k \rightarrow \text { dilatali }
\end{aligned}
$$

$k \rightarrow$ dilatational visuosity
= 0'Aor monoatomie gas of lowes dempity

$$
\therefore \begin{aligned}
& \tau_{i j}=\tau_{j i}=-\mu\left(\frac{\partial v_{j}^{\prime}}{\partial x_{1}}+\frac{\partial v_{i}^{\prime}}{\partial x_{j}}\right)+\left(\frac{2}{3} \mu-k\right)\left(\frac{\partial v_{n}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{k}}{\partial v_{2}}\right) \text { sij } \\
& i=1,2,3+j=1,2,3 \quad \text { for incmpryisivf }
\end{aligned}
$$

if the thindies incomporesible trom

Attervalely genenal form
pu-scalar divegence of velouls veetor
concept of Normal Stremes vetor

v is $\operatorname{tr} \cdot$ or $(r, z):$

$$
\begin{aligned}
& \tau_{z z}=-2 \mu\left(\frac{\partial v_{z}}{\partial z}\right) \\
& \tau_{r r}=-2 \mu\left(\frac{\partial v_{r}}{\partial r}\right)
\end{aligned}
$$

Presture \＆Ting eacelure depent arce of μ ：

The chand shoust that viswosty of a The charpt shousthat viswosty gos approceches a lime（the－low duritys
as the priessure becomes smaller，for most－gases thir limelr is nearly antain ar ichns 1 ． $\mu \mathrm{gas}$ al low density 4 with $\& T$
μ liqued b

$$
\mu_{e}=7.70 M^{M / 2} P_{c}^{2 / 3} T_{c}^{1 / 6}
$$

Ex．1，3－1

$$
\begin{aligned}
& \begin{array}{l}
\mu=2.6693 \times \frac{\sqrt{M T}}{\gamma^{2} \Omega_{\mu}} \\
\text { refen toeq" vire monoatonnic }
\end{array} \\
& \text { for Lgases }
\end{aligned}
$$

$$
\text { lamel } \mu=A \exp (B / T)
$$

UNLT-II - (BSL)

Sbell MonseevAun Bolave, \& violiting destibution in lammees flow

Shell Monrentums bolansees \& B.C.:
We bave Peen 'hioverals bdamee eq't bus That did wor lael yorbort the gave evesiget of contrit vilume. Heve we addren this momlen.

Hecre w.e corsiden a small e.v. then thoaink et funtiver to got a diftareusfir eqM this dift. eqM is then integrated to get quaktias line average velocity, velouty prifele pressure profle etc.

The integration conrtants are evaluted using B.C.S * (refor to supptemat pogu.)

Flow thong of a Falting film:
consider the visuring aund dewnity of the flurd ane constant. $\quad \lambda_{i}=0$ entry deslurtance

$$
\left.\begin{aligned}
& z=0, \quad z=L, \\
& y=0, \quad y=w
\end{aligned} \right\rvert\,
$$

$\omega \rightarrow$ widthon the plare consider $W \& L$ anre very large compared to 8 , as such the nucail the eutry and ent codger cambe megliested

How to select shell?

Velocity vector V do components

$$
v_{z}, v_{x}, v_{y}
$$

But $V_{x}=V_{y}=0$
for this problem \& $v_{z} \neq 0$

$$
\left.\begin{array}{l}
v_{x} \rightarrow x \text { woneaftum } \\
v_{y} \rightarrow \text { y momeraxtum } \\
v_{z} \rightarrow z=0 \\
v_{y}=0
\end{array}\right)
$$

Now $V_{z}=f(x)$ only therefore momentum is transferred in the x direction therefore Select an area of lhictanes $d x$ in \perp dreatim to x.
we can choose shell of
but the integssation wis be
 cormplicofed, and further using do 8 dy is of no use as therein momentum trampors in x, a y direction

* If the velocity is whir changing in a direction the shell may cover the whole systems in tut direction.
(39) * For small flow rateporent vishons torce wins accetten ation of lhe thid donon the woll. thenefor $v_{z} \neq(z)$
Summary of Notetion for Momeatum themes

T
viscous momentumsther Tensor
$\left\{\begin{array}{l}\pi=P S+\tau \text { MOTecular monsenturn-ther } \\ \text { Tensor }\end{array}\right.$
$\phi=\pi+l$ ver combined momentum flese It should be noted than Tentor $v_{x}=v_{y}=0 \quad \& \quad P=P(x)$ Now let's considres a fhid 1 to x direation and make a shall babovec oves (Δx) rate of z-monnentum in

$$
\left.(w \Delta x) \phi_{2 z}\right|_{z=0}
$$ across suptace of $z=0$ -

$$
\text { ons, as } z=\left.L^{\prime} \quad(w \Delta x) \phi_{z z}\right|_{z}=L
$$

rote of 7 momentumin aterss

$$
\left.\operatorname{L\omega }\left(\phi_{x z}\right)\right|_{x}
$$

Surfoce at x
raker z momentum ous

$$
\left.\operatorname{Lw}(\phi x z)\right|_{x+\Delta x}
$$ acrors senface of x for

$L \omega \Delta x(\rho g \cos \beta):$ fhent in flu $y^{\prime} d i s e d i$ on

$\phi=\underline{\underline{\pi}}+\varphi \underline{V} \quad$ whee $\quad \pi=P \delta f \underline{=}$
This Φ will have wine component

In this problem $V_{x}=v_{y}=0$ no mentumen indirection therefore only existing termuil be

$$
\Phi=\phi_{x z} \quad \phi_{y z} \quad \phi_{z z}
$$

Second lubseript \rightarrow flow direction first $* \rightarrow$ Area 1 to that direction.

$v_{n} \& v_{y}$ are bott jew, $\rho v_{x} v_{z}$ and fly, v_{z} are zen.. Since v_{z} lies not depend on y and z. it follows from Tasters that $T_{y z}=0 T \tau_{z 7}=0$ Therefore the lems with dashed line shaven in the $\mathrm{Ag}^{\text {in }}$, appear in the final momentum balance equation for the balance of 3 momentum.

$$
\begin{gather*}
\operatorname{Lw}\left(\phi_{x z} f_{x}-\phi_{x a} \|_{x+\Delta x}\right)+w \Delta x\left(\left.\left.\phi_{z z}\right|_{z=0} \quad \phi_{z=L}\right|_{z=L}\right) \\
+L W \Delta x(\rho g \cos)=0
\end{gather*}
$$

divide the eqn by $L W \Delta x$ and tare limit $\Delta x \rightarrow 0$

$$
\begin{aligned}
& \begin{aligned}
\lim _{\Delta x \rightarrow 0}(\left.\underbrace{\left.\phi_{x z}\right|_{x+\Delta x}-\phi \mid \phi_{x y}}_{\Delta x}\right|_{x})
\end{aligned} \frac{\left.\phi_{z z}\right|_{z=0}-\left.\phi_{z z}\right|_{z=L}}{\mathbb{L}} \\
& \frac{\partial \phi_{x z}}{\partial x}-\frac{\phi_{z=0}-\left.\phi_{z z}\right|_{z=L}}{L}=\beta \rho \cos \beta \text {. }
\end{aligned}
$$

Now

$$
\begin{aligned}
& \phi_{x z}=\rho v_{x} v_{z}+\tau_{x z}+\theta_{*}=-\mu \frac{\partial v_{z}}{\partial x}+\rho v_{x} v_{z} \\
& \phi_{z z}=p+\tau_{z z}+\rho v_{z} v_{z}=\rho-2 \mu \frac{\partial v_{z}}{\partial z}+\rho v_{z} v_{z}
\end{aligned}
$$

look in to the gienrevalized eq"
of visrocity eam $1.2-6$ PP 18
(41)

$$
\begin{aligned}
& v_{x}=v_{y}=0, \quad p=p(x) \quad a \ln \quad \frac{\partial^{v} z}{\partial z}=0 \\
& \text { as } v_{z}=v_{z}(x) \\
& \frac{\partial \phi_{x z}}{\partial x}-\frac{\left.\phi_{z 7}\right|_{z=0}-\left.\phi_{z z}\right|_{z=L}}{L}=\rho g \cos \beta
\end{aligned}
$$

$$
\frac{\partial \tau_{x z}}{\partial x}-0=\rho g \cos \beta
$$

here mote that

$$
\frac{1 \tau x z}{x}=\rho g \cos \beta
$$

integreling $f_{x}^{\text {at, }}, \tau_{x \in}=0, \quad$ B.C. that mousevation is trons buen
trom lesres trom lessen

$$
\tau x z=\rho g \cos \beta x
$$ ' x ' or

lesere' w ' ont the thtewnd of

$$
\tau_{x z}=-\mu \frac{d v_{z}}{d x}
$$ (Nenton's law)

$$
\therefore \quad-\mu \frac{v_{z}}{d x}=\rho g \cos \beta x
$$

$$
d v_{z}=\frac{\rho g \cos \beta}{-\mu} x \cdot d x
$$

at $x=$ s/f $v_{z}=0$ (No seip Bounday
corderion condision)

$$
v_{z}=\frac{\rho g \cos \delta^{2}}{2 \mu}\left[1-\left(\frac{x}{\delta}\right)^{2}\right]
$$

Parabola xelocing destribution
(2) max velocity ? $x=0, V_{z}=$ Van

$$
v_{z, \text { max }}=\frac{\rho g \cos \gamma^{\beta} \delta^{2}}{2 \mu}
$$

(ii) wig veloci's

$$
\begin{aligned}
& \left\langle V_{z}\right\rangle=\frac{\int_{0}^{\omega} \int_{0}^{\delta} v_{z} d x d y}{\int_{0}^{\omega} \int_{0}^{\delta} d x d y}=\frac{\omega \int_{0}^{\delta} v_{z} d x \cdot}{\omega \delta \delta} \\
& =\frac{\int_{0}^{\delta} V_{z} \cdot d x}{\delta}=\frac{\frac{\rho g \cos \beta}{2 \mu} \int_{0}^{\delta}\left[\delta^{2}-x^{2}\right] \cdot d x}{\delta} \\
& =\frac{\rho g \cos \beta}{2 \mu \delta}\left[\delta^{2} \cdot x-\frac{x^{3}}{31}\right]_{0}^{\delta}=\frac{\rho g \cos)}{2 \mu \delta} \cdot \delta^{x}[1-\xi] \\
& =\frac{\rho g \cos \beta \cdot \delta^{2}}{3 \mu}=\frac{2}{3} V_{z} \text { mixes } \\
& \left\langle V_{z}\right\rangle=23^{V_{\text {max }}}
\end{aligned}
$$

(43)
(iii) Mass flow sate

Area 1

$$
w=\int_{0}^{w} \int_{0}^{s} \rho \cdot v_{1} d x d y
$$

$$
\begin{aligned}
& \text { Area direction } \\
&=\rho \omega \int_{0}^{\delta} v_{z} d x=\rho \omega \cdot \delta\left|\frac{\int_{0}^{\delta} v_{z} d x}{\delta}\right| \\
&=\rho \omega \cdot \delta \cdot\left\langle v_{z}\right)
\end{aligned}
$$

$$
\dot{\omega}=\frac{\rho^{2} g W f^{3} \cos \beta}{3 \mu}
$$

(iv) Fillom thicomens ' δ '

$$
S=\left(\frac{3 / 4 a}{\rho^{2} g \cos \beta}\right)^{1 / 3}
$$

(v) The force fer want arne in $z \rightarrow$ on a plane 1 * direction $=\tau_{x z}$ at $x=\delta$
thin forcer exerted ty the fuad on the wall

$$
\begin{aligned}
& F=\int_{0}^{L} \int_{0}^{\omega}\left(\left.\tau_{n z}\right|_{x-\delta}\right) d y \cdot d z \\
&=\int_{0}^{L} \int_{0}^{\omega}\left(-\left.\mu \frac{d \nu z}{d x}\right|_{n=\delta}\right) d y \cdot d z \\
&=L \omega \cdot\left(-\lambda^{\alpha}\right)\left(f \frac{f g \delta \cos \beta}{\mu}\right)=f g \delta L \omega \cos \beta \\
& \text { commoners of the weight on the film }
\end{aligned}
$$

(z components of the weight of the film)
(44)
flow Through a circulan "ulse:
consider thearty ratore fomon Natice

$$
\begin{aligned}
& v_{z}=v_{z}(r) \\
& v_{v} v_{\theta}=0
\end{aligned}
$$

Also Talle about shell selection:

rate σ_{0}
Momatume in zdrection velid. across surface of $z=0$

$$
\left.2 \pi r \cdot \Delta r \phi_{z z}\right|_{z=0}
$$

$$
\ldots \text {...out }
$$

of $z=1$

$$
\left.2 \pi r \Delta r \phi z z\right|_{z=L}
$$

rose of morneat in aurb suface at r

$$
\left.2 \pi r L \phi r z\right|_{r=r}
$$

rate of morment out oecws
suface at $r=r+\Delta r$.

$$
=\left.n(\gamma+\Delta r) \cdot L \phi_{r z}\right|_{r=r+\Delta r}
$$

weight of thend (granity $=2 \pi r \Delta r \cdot L \cdot \lg$. force)
Bodance it zdirekim

$$
\begin{aligned}
& \left.\Rightarrow \quad 2 \pi r \Delta r \phi_{z z}\right|_{z=1}-\left.2 \mu r \Delta r \phi_{z t}\right|_{z=0} \\
& \begin{array}{l}
=1-2 \pi r \Delta r \phi_{z \in} z=0 \\
-\left(2 \pi L L \phi_{r z}^{\prime \prime} \rho_{2}-2 \pi\left(\left.(f \Delta r) \cdot 1 \phi_{r z}\right|_{r+\Delta r}\right)\right. \\
=2 r \Delta r \cdot-1 g .
\end{array}
\end{aligned}
$$

Shear stress in cylingreal corranate

$$
\begin{aligned}
& \tau_{r r}=-\mu\left[2 \frac{\partial v_{r}}{\partial r}\right]+\left(\frac{2}{3} \mu-k\right)(\nabla v) \\
& \tau_{\theta \theta}=-\mu\left[2 \frac{\partial v_{\theta}}{\partial \theta}\right]+\left(\frac{2}{3} \mu-k\right)(\nabla \cdot v) \\
& \tau_{z z}=-\mu\left[2 \frac{\partial v_{z}}{\partial z}\right]+\left(\frac{2}{3} \mu-k\right)(\nabla \cdot v) \\
& T_{r \theta}=\tau_{\theta r}=-\mu\left[r \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}\right] \\
& \tau_{\theta z}=\tau_{z \theta}=-\mu\left[\frac{1}{r} \frac{\partial v_{z}}{\partial \theta}+\frac{\partial v_{\theta}}{\partial z}\right] \\
& \tau_{z r}=\tau_{r z}=-\mu\left[\frac{\partial v_{z}}{\partial r}+\frac{\partial v_{r}}{\partial z}\right]
\end{aligned}
$$

How through. circuilar twbe: Supplementany shey
$V_{r}=0 \mid r$ momentum (ineglecerd)
$v_{\theta}=0 \quad \theta$ monereutum ($\left.v_{1}\right)$
$v_{z}=\rightarrow z$ momentum. $v_{z}^{2}=f\left(x_{1}^{2}, z^{*}\right)$
$\phi_{r z}, \quad \phi_{\theta z}, \quad \phi_{z z}$
will be ofour concern.

$$
\begin{aligned}
\phi & =p \cdot \underline{\underline{\delta}}+\tau^{2}+\rho \underline{v} \\
\phi_{v z} & =p \cdot \rho^{0}+\tau_{r z}+\rho v_{r} \cdot v_{z}^{0} \quad\left[\tau_{r z}=-\mu\left(\frac{\partial v_{z}}{\partial r}+\frac{\partial v_{r}}{\partial z}\right)_{0}^{0}\right. \\
\phi_{\partial z} & =\rho \cdot \rho_{0}^{0}+\tau_{\theta z}+\rho v_{\theta} \cdot v_{z}^{0} \quad\left[\tau_{\partial z}=-\mu\left[\frac{1}{r} \frac{\partial v_{f}^{0}}{\rho v^{0}}+\frac{\partial v_{\theta}}{\partial z}\right]\right. \\
\phi_{z z} & =\rho \cdot 1+\tau_{z z}+\rho v_{z} \\
& =p+\left[-2 \mu \cdot \frac{\partial v_{z}}{\partial z}\right]+\rho v_{z}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\phi_{7 z} & =P_{0}^{0} \rho v_{z} \cdot v_{z}+\tau_{r_{z}} \\
& =P^{0} 0+\left(-\mu \frac{\partial v_{z}}{\partial r}\right) \\
\phi_{z 7} & =p+\rho v_{z} \cdot v_{z}+\tau_{z z} \\
& =p+\rho \cdot v_{z} v_{z}+\left(-2 \mu \frac{\partial y_{z}}{\partial z}\right)
\end{aligned}
$$

Avide the expression by $2 \pi \Delta r . L$
Thior refertar"
postion ounct tasce bine $\Delta r \rightarrow 0$

$$
\begin{aligned}
& \underset{\Delta r \rightarrow 0}{\sin }\left(\frac{\left.r \phi_{v z}\right|_{r+\Delta r}-\left.r \phi_{r z}\right|_{r}}{\Delta r}\right)=\left(\frac{\left.\phi_{z z}\right|_{z=0}-\left.\phi_{z z}\right|_{z=l}}{L}+f g\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\rho_{0}-P_{1}}{L} \cdot r \text { modified } \\
& \frac{\partial}{\partial r}\left(r r_{\gamma z}\right)=\frac{P_{0}-P_{2}}{L} \cdot r
\end{aligned}
$$

integraling

$$
\begin{aligned}
& r \tau_{r z}=\frac{\rho_{0}-P_{2}}{L} \cdot \frac{r^{2}}{2}+c_{1} \\
& \tau_{r z}=\frac{\rho_{0}-P_{L}}{2 L} \cdot r+\frac{C_{1}}{r}
\end{aligned}
$$

B.c. at $r=0, \quad \operatorname{tr} z=$ finithe thus $c_{1}=0$
(i8)
othirwise Fra willke infwitige

$$
\begin{aligned}
\therefore r_{r} & =\frac{P_{0}-P_{1}}{2 L} \cdot r \\
\frac{N_{0}}{r_{r_{z}}} & =-\mu \frac{\partial v_{z}}{\partial r}=\frac{P_{0}-P_{1}}{2 L} \cdot r \\
v_{z} & =-\frac{P_{0}-P_{1}}{2 L \mu} \cdot \frac{r^{2}}{2}+c_{2}
\end{aligned}
$$

at $r=R, \quad v_{z}=0, \quad \frac{\text { (No seip condtion) }}{V_{\text {flide }} \text { vorded a }}$

$$
\begin{array}{r}
V^{V R}=-\frac{\rho_{0}-\rho_{1}}{2 L \mu} \cdot \frac{R^{2}}{2}+c_{2} \\
\therefore c_{2}=\frac{\rho_{0}-\rho_{1}}{4 \mu L} \cdot R^{2} \\
\left.\therefore V_{z}=\frac{\rho_{0}-P_{1} R^{2}\left[1-\left(\frac{r}{R}\right)^{2}\right]}{4 \mu L}\right]
\end{array}
$$ fluid soled -warei.

Panoloric velocity distribution
(i) Max Velvi'ty

$$
V_{z \text { max }}=\frac{P_{0}-P_{1}}{4 \mu L} \cdot R^{2}
$$

(ii) aug veloviry $\left\langle v_{z}\right\rangle=\frac{\int_{0}^{2 \pi} \int_{0}^{R} v_{z r d r} d \theta}{\int_{0}^{2 \pi} \int_{0}^{R} r d r \cdot d \theta}$

$$
\left\langle v_{z}\right\rangle=\frac{\left(\rho_{0}-\rho_{1}\right) \cdot R^{2}}{8 \mu L}=\frac{1}{2} \cdot v_{2} \max
$$

(iii) mas flow ralle

$$
\begin{aligned}
w & =\rho \cdot\left\langle v_{z}\right\rangle \cdot \pi R^{2} \\
& =\rho \cdot \frac{\left(\rho_{0}-\rho_{t}\right)}{8 \mu L} \cdot R^{2} \cdot \pi R^{2}=\frac{\pi \rho\left(\rho_{0}-\rho_{L}\right) R^{4}}{8 \mu L}
\end{aligned}
$$

Hagen - Pris-euilke eq"! It is ubed for measuning viscosity in a coppillary vis cometer
(iv) The z comporeas of the force F of the fund on the wetted Supace of thi puy pipe is - Trz rorea

$$
\begin{aligned}
& F_{z}=\left(-\mu \frac{r^{V_{7}}}{\partial t}\right) \cdot(2 \pi R \cdot L)=\pi R^{2}\left(\rho_{0}-\rho_{L}\right) \\
& F_{z}=\frac{\pi R^{2}\left(\rho_{0}-P_{L}\right)}{\frac{\vdots}{\text { pressur. }}}+\frac{\pi R^{2} L \cdot \rho \cdot g}{L}
\end{aligned}
$$

viscons poresse, is countaes to dancedtory pressure and fore its valid Asminpuin in thi teadition
(i) laviral faw $\mathrm{Re}<2100$
(2) Pwortalt - imoupreasiblle thow
(iii) S.s. flow
(i) Nentoman fhid. (0) Evad efpechare neglected. Le $\geq 0.035 D^{2}$
(vi) fhid in continum (vii) no scip B.e. 2.5 is

$$
\begin{array}{rrr}
2 A .1, & 2 A .3, & 2 A .4 \\
A_{\text {Arign. }}^{2 B .6^{2}} & 2 B .7 & 23.12
\end{array}
$$

Flow through annulus:

Can ne use thin eau derived in the perron probstreas.
Ans: As the shell have same smolun same eq car be used, but the gravity tern will were cary a -ive sign
en is

Therefore here

$$
\begin{aligned}
& \begin{array}{c}
\left.\left.{ }^{2}\right|_{z=0} ^{0}-\left.\rho v_{z}{ }^{2}\right|_{z=1}\right) \\
\left.+\left(p_{0}-p_{L}\right)\right]
\end{array} \\
& \left.+\left(P_{0}-P_{L}\right)\right]+2 \pi L \cdot\left[r\left(\left.r z\right|_{r}-\left.r \tau_{r}\right|_{r a \Delta r}\right]\right. \\
& \Theta \rho g 2 n r \Delta r . L=0 \\
& \text { vegaline sign }
\end{aligned}
$$

$$
\frac{\left(P_{0}-P_{L}\right)_{r}}{L}+\frac{\left(\left.r \tau_{r z}\right|_{r}-\left.r \tau_{r z}\right|_{r+\sigma r}\right)-e_{g} r=0}{\Delta r}
$$

Modified pressure cau be defined as

$$
\rho_{L}=p_{L}+\rho g L ; \quad \rho_{0}=p_{0}+\rho g(0) \text {. }
$$

bowto warce fue thatrequean se used
creck selocity components

$$
\begin{aligned}
& \underline{v}=\left(v / r, v_{0}^{0}, v_{z}^{0}\right) \\
& \& v_{z}=f(v)
\end{aligned}
$$

Therefore lwi shall slivetru will be Same whichwiers lead to same eqy
Q.

in thiease which velocity

$$
\begin{aligned}
& \text { thiease which will exist } \\
& \text { componewh w } \\
& y_{r}, y_{\theta}, v_{z} \\
& v_{z}=f(r, \theta) \\
& v_{z} \neq f(z)
\end{aligned}
$$

luthin case we bove

$$
\begin{gathered}
\frac{v_{z}+v_{r} \rightarrow}{}=f(r, z) \\
\neq f(\theta) \\
v_{z}=f(r, z)
\end{gathered}
$$

$$
\frac{\partial r \cdot \tau_{n z}}{\partial r}=f\left(P_{0}-P_{L}\right) \cdot r
$$

Now check for the bowdany condition
here we can not use ${ }^{@} r=0$
because there is no fend of $r=0$, (out of our consentendise)

$$
\begin{aligned}
& \frac{r \cdot T_{r z}}{}=+\left(\frac{\rho_{0}-\rho_{L}}{L}\right) \frac{r^{2}}{2}+c_{1} \\
& r_{r z}=-\mu \frac{\partial v_{z}}{\partial r}=-\mu \frac{d v_{z}}{d r} \text { as } r_{r_{z}} \neq+(\theta, z) \\
& -r \mu \frac{\partial r_{z}}{\partial r}=\left(\frac{\rho_{0}-\rho_{L}}{L}\right) \frac{r^{2}}{2}+c_{1} .
\end{aligned}
$$

we cont know where the velocity is mass mum
let of $\lambda=1 R$, velocity
is una and hence $\frac{\partial^{r} z}{\partial r}=0$.

$$
\begin{aligned}
G_{1} & =-\left(\frac{\rho_{0}-\rho_{L}}{L}\right) \frac{\lambda^{2} R^{2}}{2} \\
\therefore \quad & \tau_{r_{z}}=\left(\frac{\rho_{0}-\rho_{L}}{2 L}\right)\left[r-\frac{\lambda^{2} R^{2}}{r}\right]=\left(\frac{\rho_{0}-\rho_{L}}{2 L}\right) R\left[\frac{r}{R}-\lambda^{2}\left(\frac{R}{r}\right)\right]
\end{aligned}
$$

47 dd
Further

$$
\frac{d v_{z}}{d r}=-\frac{\left(\rho_{0}-\rho_{L}\right) R}{2 \mu L}\left[\frac{r}{R}-\lambda^{2}\left(\frac{R}{r}\right)\right]
$$

as we $\left(\frac{r}{R}\right) \quad R$ being compar

$$
\begin{aligned}
& \frac{d}{d \pi}(r / R)=\frac{1}{R} \\
& \therefore d r=R\left[d\left(\eta_{R}\right)\right] \\
& \therefore \frac{d r_{z}}{R d\left(\frac{r}{R}\right)}=-\left(\frac{\rho_{0}-\rho_{L}}{2 \mu L}\right) R\left[\frac{r}{R}-\lambda^{2}\left(\frac{R}{r}\right)\right] \\
& \begin{array}{l}
\text { or } \\
\left.d v_{z}=-\frac{\left(\rho_{0}-\rho_{L}\right.}{2 \mu L}\right) R^{2}\left[\frac{r}{R}-\lambda^{2}\left(\frac{R}{r}\right)\right] d(r / R) \\
\mu_{r}
\end{array} \\
& \underline{V_{z}}=-\left(\frac{\rho_{0}-\rho_{L}}{2 \mu L}\right) R^{2}\left[\left(\frac{r}{R}\right)^{2} \cdot \frac{1}{2}-\lambda^{2} \ln \left(\frac{r}{R}\right)\right]+C_{2}^{\prime} \\
& =-\left(\frac{\rho_{0}-\rho_{L}}{41^{4 L}}\right) R^{2}\left[\left(\frac{r}{R}\right)^{2}-2 \lambda^{2} \ln \left(\frac{r}{R}\right)\right]+c_{2}^{\prime} \\
& =-\left(\frac{\rho_{0}-\rho_{L}}{4 \mu L}\right) R^{2}\left[\left(\frac{r}{R}\right)^{2}-2 \lambda^{2} \ln \left(\frac{r}{R}\right)+c_{2}\right]
\end{aligned}
$$

B_{C}.
(a) $r=k R \quad v_{z}=\underset{-1}{0}$
(a) $r=R \quad v_{z}=0$.

Two B C's because we bare two umanours $\lambda_{1} \& C_{2}$ in the eq
from I st $B \cdot C$

$$
0=-A\left[k^{2}-2 w^{2} \ln k+c_{2}\right]
$$

From $I^{+\infty}$ ic

$$
\begin{aligned}
& 0=-A\left[1+c_{2}\right] \quad \text { where } \\
& \therefore \frac{c_{2}^{p}=-1}{} \\
& \& r_{1}=\frac{I^{s}+q^{n}}{1-\lambda^{2}}=\frac{k^{2}-1}{\ln k}=\frac{1-u^{2}}{\ln (2 k)}
\end{aligned}
$$

$$
\left.\frac{N_{\sigma \omega}}{{ }^{\sigma_{r z}}}=\frac{\left(\rho_{0}-\rho_{L} / R\right.}{2 L}\left[\left(\frac{r}{R}\right)-\frac{1-k^{2}}{2 \ln \left(h_{k}\right)}\left(\frac{R}{r}\right)\right]\right)
$$

$1 ヵ \|$
man velocity will be close to inner

48
The equations of change floo gso thomed lytiem.

Refer to the lecture videos of Prof. Sunando. . for further explanation, Lecture 9 to 16 .
we Cablet agn os change as we cam meash the change of any quatity using theseqn.
bat

The equ of continnity: (Cbang ies moes)
Mas betance oven the etemer (Gsotheme)
system)
duvide $k y, \Delta x, \Delta y, \Delta z$ and take $\left.\quad \Delta p v_{z}\right) \quad \Delta x \mid \rightarrow 0$

$$
\frac{\partial \rho}{\partial t}=-\left(\frac{\partial \rho v_{x}}{\partial x}+\frac{\partial \rho v_{y}}{\partial r}+\frac{\partial \rho v_{z}}{\partial z}\right)
$$

L-ris. \rightarrow netrate of mass inereare/thlum
Rinis \rightarrow net salie Y marso addition ture to convective flow.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { rate or } \\
\text { inctiease } \\
\text { of mas }
\end{array}\right\}=\left\{\begin{array}{l}
\text { nore of } \\
\text { manin }
\end{array}\right\}-\left\{\begin{array}{c}
\text { roliee or } \\
\text { moni } \\
\text { nol }
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\left.\rho v_{y}\right|_{y}-\rho v_{y}\right) \longrightarrow \text { Area L to Jow } \\
& \left.+\left(\left.\rho v_{z}\right|_{z}-\left.\rho v_{z}\right|_{z+\Delta z}\right) \Delta x+\Delta y\right)
\end{aligned}
$$

if $\rho=$ const. (meongrereninte thiel)
i.e. nochange w.rt. time and posection

$$
\begin{aligned}
& 0=\rho\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial z}+\frac{\partial v_{z}}{\partial z}\right) \\
& (\nabla \cdot v=0) \text { Imponanytusion conctur } \\
& \left.\tau_{7 z}\right|_{z=0}=-\left.2 \mu \frac{\partial v_{z}}{\partial z}\right|_{z=0}=\left.2 \mu\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}\right)\right|_{t=0}=0
\end{aligned}
$$

wo Slip condition $\frac{\partial v x}{\partial x}, \frac{\partial v y}{\partial y} \geq 0$

The Equetion of morion:.

(450) which is the wet sotre of x-momentum

Externd force (typically a grantolion fone)

$$
\rho g_{x} \Delta x \Delta y \Delta z
$$

rate of inelease of x-momentum welvin the volume eltenert: $\Delta x \Delta y \Delta z\left(\frac{\partial(f-x)}{\partial t}\right)$
(*) Adding above tormes and devidin by $\Delta x, \Delta y, \Delta t$

$$
\frac{\partial}{\partial t}(\rho v x)=-\left(\frac{\partial}{\partial x} \phi_{x x}+\frac{\partial}{\partial y} \phi_{y-t}+\frac{\partial}{\partial t} \phi_{7 x}\right)+\rho g_{x}
$$

line whe for y aficheresire L

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\rho^{v} v_{y}\right)=-\left(\frac{\partial}{\partial x} \phi_{x y}+\frac{\partial}{\partial y} \phi_{y y}+\frac{\partial}{\partial z} \phi_{z y}\right)+\rho_{g_{1}} \\
& \frac{\partial}{\partial z}\left(\rho v_{z}\right)=-\left(\frac{\partial}{\partial x} \phi_{x z}+\frac{\partial}{\partial y} \phi_{y z}+\frac{\partial}{\partial z} \phi_{z z}\right)+\rho g_{z} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Uarg vestopion itensornin } \\
& \frac{\partial}{\partial t} \quad i=x, y z
\end{aligned}
$$

untice the Squan orvekens used for wopto tensor ution quawhineses opi are ar texion compouparti of the vectorest. ohich -is the monument pee:
in gemend mit sulume at a poont? in the fhind 4 inewite iffic aie the
 vector.
combented

$$
\begin{aligned}
\phi & =p \delta+\rho v v+\tau \\
\frac{\partial}{\partial t} \cdot(\rho v) & =-(\nabla \cdot \rho v v)-\nabla \rho-[\nabla \cdot \tau]+\rho g
\end{aligned}
$$

(A) \rightarrow rake of momentum $($ in 0 out $)+\sin$ of freces $=$ rateoracc. rate oomentum
(51)

Phyficol meany 8 the torw.
(1) term \qquad $\frac{\partial}{\partial t} \rho V \rightarrow$ rate of cneveare of momentur/uolum
(2) ten reteof momentum addixies by convection/volum.
(3) + (4) Ir dere to unteculai trompors/ Whive
(5) Epteencel force on thiv/ shlume.
$\nabla P \longrightarrow \quad$ "grad P "

The Equation of Arechamical Einergy: Change is terms of thi sutitantid demivetive:

Partal derivalive:-

$$
c=f(x .4 . z . t)
$$

$\left.\frac{\partial l}{\partial t}\right|_{ \pm, 4, z} \rightarrow$ standiy ar one poits
Trotal time

$$
\begin{aligned}
& \frac{d c}{d x}=\left.\frac{d c}{\partial t}\right|_{x+7}\left(\frac{d}{d t}\right) \\
&+\left.\frac{d z}{d t}\left(\frac{\partial c}{\partial x}\right)\right|_{y z, t}+\left.\frac{d y}{d t}\left(\frac{\partial c}{\partial t}\right)\right|_{x, y, t} \\
& \frac{d x}{d x}, \frac{d y}{d t}, \frac{d z}{d t} \rightarrow \text { velocity of the } \\
& \text { boat is } \\
& x, \rightarrow 1, \sigma 7 \text { dinder }
\end{aligned}
$$

time
Substantial perivalim:

$$
\begin{aligned}
& \frac{\text { Ostantial perinalim: }}{\frac{\partial c}{D t}=\frac{x}{2 t}+v_{7} \frac{x}{\partial z}+y_{y} \frac{x}{\partial t}+v_{z} \frac{x}{\partial z}} \begin{array}{r}
=\frac{x}{x t}+(v \cdot \nabla c) \\
\frac{D}{D t}=\frac{\partial}{\partial t}+(v \cdot \nabla) \quad \text { Substantial } \\
\text { derinal }
\end{array}
\end{aligned}
$$ devivolive

Hime rave o\% change as onre mores wien the subtience: Alsocallied derivaliur fotewing thi mofion.
(53)
converting expression in terms of $\frac{\partial}{2 t}$ into $\frac{D}{D t}$ For any Debar function $f(x, y, z, t)$
Soy we have

$$
\begin{aligned}
& \frac{\partial}{\partial t}(\rho f)+\frac{\partial}{\partial x}\left(\rho v_{x} f\right)+\frac{\partial}{\partial y}\left(\rho v_{y} f\right)+\frac{\partial}{\partial z}\left(\rho v_{z} f\right) \\
& =\rho\left(\frac{\partial f}{\partial t}+v_{x} \frac{\partial f}{\partial x}+v_{y} \frac{\partial f}{\partial y}+v_{z} \frac{\partial f}{\partial z}\right)+f\left(\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}+v_{x}\right. \\
& \left.+\frac{\partial}{\partial f} \rho v_{y}+\frac{\partial}{\partial z} \rho v_{z}\right)
\end{aligned}
$$

Cure torean of continumily

$$
=\rho \frac{D f}{D t}{ }^{2}
$$

in Vector form

$$
\frac{\partial}{\partial t}(f f)+(\underline{\nabla} \cdot \rho \stackrel{\rho f}{ })=\rho \frac{D f}{D t}
$$

if $f(x, y, z, t)$ is a vector function.

$$
\left.\begin{aligned}
& \text { if } f(x, y, z, t) \\
& \frac{\partial}{\partial t}(\rho f)+(\underline{P}, \underline{\rho} f)=\rho \frac{D I}{D t}
\end{aligned} \right\rvert\, v, f \text { are }
$$

See Table 3.S-1 for various $\frac{D}{D t}$ forms of ear of change

$$
\begin{aligned}
& 3.1-4 \frac{D P}{D+.}=-\rho(\nabla \cdot \nabla) \\
& \text { (A) Equation of continuity in substantial derivative } \\
& \text { form } \\
& \text { 3.2-9 } \frac{\rho \partial v}{\Delta t}=-\nabla \rho-[\nabla \cdot \vec{\tau}]+\overrightarrow{\rho g} \quad \begin{array}{c}
\text { Eytataion of motion in suse. derv. } \\
\text { form }
\end{array} \\
& 3 \cdot 3-1 \quad \rho \frac{D}{\text { Energy equation in the }}\left(\xi_{2} v^{2}\right)=-(\vec{v} \cdot \nabla \rho)-(v \cdot[\nabla \cdot \cdot])+\rho(v \cdot g) \cdot
\end{aligned}
$$

Energy equation in the substatial derivative form. This equation has been obtained by taking dot product of velocity v with the equation of motion.
Each term of the energy equation has the unit. rate of change of energy per unit volume.
(54)

The most common simplificalions of the equation of mofion:
(i) Const \rightarrow thendiuncompress ible

Recall.

$$
\rho \frac{D}{D t} \bar{v}=-\nabla \rho+\mu \nabla^{2} \vec{v}
$$

$\rho \rightarrow$ modifiea pressme
Navier- Stokes eqM
It can not be used for gases. (ρ mony not be Voefulfor liavidanly: (coubtant, When accetenction Tierm in the Naven-stockes equelion are negleceredr that is when

$$
\begin{aligned}
& \rho \frac{D v}{D E}=0 \longrightarrow \\
& 0=-\nabla \rho+\mu \nabla^{2} \vec{v}+\rho \vec{g}
\end{aligned}
$$

Stores flow equation
Greeping flow equation.
$\because 1 .[\vec{V}$. TV $]$ can be discardred when th flow es extrenvely slow
(iii) when viswors farces are veghected. ite. $[\nabla, 7]=0$ the equ of mution berover.
(55)

$$
\rho \frac{D V}{D t}=-D p+\rho g
$$

no visous fores
This is Euter equabon for inviscial flow.

Use of Eapotim of charge to solure flow probtems

Greneul eqkatims lo be uned untoucuity, motion, eqn of state $p=p(p)$, componeuti of T visurity reqM $\mu=\mu(e)$ They arre mosed with sarax respations (d) contart ? constars H

Addivionally withsome appropmate, B.C.
postulate
final exprenim

Solve the wimpercim

Ex. 3. 8-1
Geamkopoter

Lamunan flow bow Horzzortal parallel plates -
steady rtale, corstant density constanir μ fhusd flowing bl m luo paraluel plataog
(liqund) Daidth.
rebocity mofile or Somewhene widnacy Wh sintiet \& outtlel, wiels flow doven by pressure gradenes

$$
\begin{aligned}
& v_{x}=v_{x}(y), \quad v_{y}=v_{z}=0, \quad \frac{\partial v_{x}}{\partial t}=0(s \cdot s \cdot i) \\
& \frac{\partial v_{x}}{\partial x}, \frac{\partial^{2} v_{p}}{\partial x^{2}}=0,
\end{aligned}
$$

from
Contimity $e g^{M}$ for constant devsiry

$$
\frac{\partial v_{x}^{\prime}}{\partial x}+\frac{\partial v_{y}>^{0}}{\partial y}+\frac{\partial v_{z}>^{0}}{\partial z}=0
$$

The N-S. eqn $\overbrace{0}$ wation for x corm pormente.
(57)

$$
\begin{aligned}
& 0=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} v_{x}}{\partial y^{2}}\right)+\rho g y^{0} \\
& \frac{\partial P}{\partial x}=\mu^{\mu} \frac{\partial^{2} v_{x}}{\partial y^{2}} \\
& \frac{1 d p}{\mu d x}=\frac{d^{2} v_{x}}{d y^{2}}=\text { cont. }
\end{aligned}
$$

$\partial x=0$ (gravity. only in Vertical direct
$p \neq p(z)$ c if $2 y_{0} \ll$ then $p \neq P(y)$
Now since $v_{x} \neq v_{x}(x)$ $\frac{d P}{d x}=\operatorname{const}$.

Use BC:
at $y=0, \quad \frac{d v_{x}}{d y}=0, \quad$ (from Symmetry)

$$
\therefore \frac{d V_{x}}{d \mu}=\frac{1}{\mu} \frac{d p}{d x} \cdot y
$$

again at $y=H_{0}, v_{x}=0$,

$$
\begin{aligned}
& \therefore v_{x}=\frac{1}{2 \mu} \frac{d p}{d x} \cdot\left[y^{2}-y_{0}^{2}\right)^{2} \\
& v_{x}=\frac{1}{2 \mu} \frac{d p y_{0}^{2}}{d x}\left[x^{2} \cdot\left(\frac{y_{0}}{y}\right)^{2}\right] \\
& v_{x}=v_{x \text { wax }} \text { ar } y=0 \\
& v_{x, \text { wax }}=\frac{1}{2 \mu} \cdot \frac{d p}{d x}\left(-y_{0}^{2}\right) \\
& v_{x}=v_{x} \text { max }\left[1-\left(\frac{y}{y_{0}}\right)^{2}\right]
\end{aligned}
$$

Flow of a folling film revrsted: (P, μ constans.)
44 stant with contrmily eqh

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+(\nabla \cdot \rho v)=0 \\
& \nabla \cdot v=0 \\
& \frac{\partial y_{x}}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial v_{z}}{\partial z}=0 \\
& v_{0}=v_{y}=0 \\
& \therefore \frac{\partial v_{z}}{\partial z}=0
\end{aligned}
$$

henes

$$
v_{t} \neq f(z)
$$

N.S eqn canbe applied as $\rho \& \mu$ are constans

$$
\begin{aligned}
& \rho \frac{D V}{D t}=-\nabla p+\mu \nabla^{2} \bar{v}+\rho \bar{g} \\
& \frac{x-\operatorname{comp}}{\rho\left(\frac{\partial v_{x}}{\partial t}+\frac{\partial v y}{\partial x}+v_{j} \frac{\partial v v^{\prime}}{\partial y}+v^{\circ} \partial v^{\prime} \partial z\right)^{0}}{ }^{0}
\end{aligned}
$$

$+\left(\frac{\text { r-comp; }}{\partial t}+v_{x} \frac{\partial v_{y}}{\partial x}+v_{y} \frac{\partial v_{y}}{\partial y}+v_{y} \frac{\partial v_{y}}{\partial z}\right)=-\frac{\partial P}{\partial y^{0}}$.

$$
\begin{aligned}
& =-\frac{\partial P}{\partial y} \\
& +\mu^{\mu}\left[\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial v_{y}}{\partial y^{2}}+\frac{\partial^{2} v_{y}}{\partial z^{2}}\right] \\
& +\rho g_{y}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{z-\operatorname{comp}}{\rho\left(\frac{\partial y z}{\partial t}\right.}+v_{x} \frac{\partial v_{z}}{\partial x}+v_{y} \frac{\partial v_{z}}{\partial y}+y_{z} \frac{\left.\partial \frac{v_{z}}{\partial z}\right)}{}=\frac{\partial p}{\partial z}+\mu\left(\frac{\partial^{2} v_{z}}{\partial x^{2}}+\frac{\partial^{2} v_{z}}{\partial y^{2}}+\right. \\
\left.\frac{\partial^{2} y z}{\partial z^{2}}\right)^{0}+\rho g_{z}^{\prime} \\
=
\end{array}
$$

x-correp

$$
0=-\frac{\partial P}{\partial x}+\rho g \operatorname{Sin} \beta
$$

$0=-\frac{\partial P}{\partial x}+\rho g \sin \beta$
(gives pressure profile)
$0=-\frac{\partial P}{\partial y}$ these for $P \neq f(y)$

Notice the II order deferential req wilt two variable which may bo difficult to solve.
Figure out which term may be tern in the eau (IIT)
it is $\frac{\partial p}{\partial z}=0$ (one mong think)
\because II is must to get veloutly profile

$$
\therefore-\mu \frac{\partial^{2} v z}{\partial x^{2}}=\rho g \cos \beta
$$

which iss simelien to the eq we have seen senlies and can sse Solved wets the similar BC
of wortion
eqni in cylinducel
corodarate system (Pefor to appendines) $15 K I P$ to contivinily eat \rightarrow Arpend $t y$ B. 4
r-conponewt

$$
\begin{aligned}
& \rho\left(\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \cdot \frac{\partial v_{\theta}}{\partial \theta}+v_{z} \frac{\partial v_{r}}{\partial z}-\frac{v_{\theta}^{2}}{r}\right) \\
&=\frac{-\partial p}{\partial r}+\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{r r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta} \cdot \tau_{\theta r}+\frac{\partial}{\partial z} \operatorname{Tzr}^{2}-\frac{\tau_{\theta \theta}}{r}\right) \\
&+e g_{r}
\end{aligned}
$$

θ - comp.

$$
\begin{aligned}
& \rho\left(\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+v_{z} \frac{\partial v_{\theta}}{\partial z}+\frac{v_{r} v_{\theta}}{r}\right) \\
& =-\frac{1}{r} \frac{\partial P}{\partial \theta}-\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} r_{r_{\theta}}\right)+\frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta \theta}+\frac{\partial}{\partial z} \tau_{\theta \theta}\right. \\
& \left.+\frac{\tau_{\theta r}-\tau_{r \theta}}{r}\right]+\rho g_{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{z \text { conys }}{\rho\left(\frac{\partial v_{z}}{\partial t}\right.}+\begin{aligned}
& \left.v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{0}}{r} \cdot \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right) \\
& =-\frac{\partial p}{\partial z}-\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{r z}\right)+\frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\partial z}+\frac{\partial}{\partial z} \tau_{z z}\right)+\rho g_{z}
\end{aligned}
\end{aligned}
$$

Contimenty eqn in cylivarical corobinote

$$
\frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}\left(\rho v_{r}\right)+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\rho v_{0}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)=0
$$

$\mathrm{N}-\mathrm{S}$ equation with constant $\rho \& \mu \quad$ B. 6

$$
\begin{aligned}
& \frac{r \text { componeul }}{\rho\left(\frac{\partial v_{r}}{\partial t}\right)}+\begin{aligned}
&\left.+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \cdot \frac{\partial v_{r}}{\partial r}+v_{z} \frac{\partial v_{r}}{\partial z}-\frac{v_{\theta}^{2}}{r}\right) \\
&=-\frac{\partial P}{\partial r}+\mu\left(\frac{\partial}{\partial r}\left(\frac{1}{r} \cdot \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{r}}{\partial \theta^{2}}+\frac{\partial^{2} v_{r}}{\partial z^{2}}-\frac{2}{r^{2}} \frac{\partial v_{\theta}}{\partial \theta}\right)\right. \\
&+\rho g_{r}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\theta \text { - component }}{\rho\left(\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \cdot \frac{\partial v_{\theta}}{\partial \theta}+v_{z} \frac{\partial v_{\theta}}{\partial z}+\frac{v_{r} v_{\theta}}{r}\right)} \\
& =-\frac{1}{r} \cdot \frac{\partial p}{\partial \theta}+\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{\theta}\right)\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{\theta}}{\partial \theta^{2}}+\frac{\partial^{2} v_{\theta}}{\partial z^{2}}+\frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta}\right) \\
& +\rho g_{\theta}
\end{aligned}
$$

7- comp

$$
\begin{aligned}
\rho\left(\frac{\partial v_{z}}{r t}\right. & \left.+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right) \\
& \left.=-\frac{\partial P}{\partial z}+\mu\left[\frac{1}{r} \cdot \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} v_{i}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right)\right]+\rho g_{z}
\end{aligned}
$$

Switch to flow through straight honjontal pipe problem.

38-2 Laminan flow b) w ventical Plares with one plate Asion mowing

Neffeventiol Eqwotions of continulty and mortion for flowin stelionary and Rortalug cylindress.
3.8.3 Lansinas flow in a cirulan Auber.

Derive /n-equ for steedy-state visums fow in a horjontal tube of radius vo. where the ghid. is far from the intel corsidier corstan $\rho \leqslant \mu$. one dirctional flew due to pressure gradient.

$$
v_{x}=v_{y}=0
$$

$$
t, \cdots z
$$

$$
z=z, \quad x=r \cos \theta, \quad y=r \sin \theta
$$

$$
J_{0}+
$$

$\frac{d v_{z}}{d z}=0$. from contimins equ from requ of motion

$$
\frac{d p}{d z}=\mu\left(\frac{\partial^{2} v_{7}}{\partial x^{2}}+\frac{\partial^{2} v_{7}}{\partial y^{2}}\right)
$$

$$
v_{7}=v_{\tau}(r)
$$ insymumeno

$$
\begin{aligned}
& r=+\sqrt{x^{2}+42} \quad, \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \frac{1}{\mu} \frac{d p}{d z}=\frac{\partial^{2} v_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial v_{z}}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial^{2} v /}{q / 0^{2}}\right) \text { का } \\
& \text { ine flow } \\
& \text { abous } \\
& z \text { asas. }
\end{aligned}
$$

(9)

$$
\frac{1}{\mu} \frac{d p}{d z}=\text { corst }=\frac{d^{2} v_{z}}{d \pi^{2}}+\frac{1}{r} \frac{d v_{z}}{d r}=\frac{1}{r} \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)
$$

BC. at $r=0, \quad \frac{d v_{z}}{d r}=0 \quad$ symmetry emaition $\sigma_{z=0}$ at $r=r o$ (tuberodru)

$$
\begin{aligned}
\therefore v_{7} & =\frac{1}{4 \mu} \frac{d P}{d z}\left(r^{2}-r_{0}^{2}\right) \\
v_{7} & =v_{z \max }\left[1-\left(\frac{Y}{r_{0}}\right)^{2}\right] \\
v_{z r} \text { aiv } & =-\frac{r_{0}^{2}}{8 \mu} \frac{d P}{d z} \rightarrow \text { cheu }
\end{aligned}
$$

Pressure dup setween $z=0, \quad \& z=$.

$$
p_{1}-P_{2}=\frac{8 \mu v_{\text {zal }}}{r_{0}{ }^{2}}=\frac{\frac{3}{} \mu v_{7} \text { av } L}{\omega_{0}^{2}}
$$

Hagen-poisenithe eq"

* Alternafely me can dneetly Stant from cylurincel cororamate

$$
\begin{aligned}
\rho\left(\frac{\partial v_{1}^{0}}{\partial t}+v_{r} \frac{\partial v_{z}}{\partial r}+\frac{v_{\theta}}{r} \cdot \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z} \\
+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{r}{} \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{\gamma^{2}} \frac{\partial^{2} p_{z}}{\partial \theta^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]+\varphi g_{z} \\
v_{r}=0, \frac{\partial v_{z}}{\partial \theta}=0, \frac{\partial_{z}}{\partial z}=0
\end{aligned}
$$

$3.8-4$
Laminai flow in a cyluosical - Arrulus
Deriv. the equotion for rtedy-riate laminau How write the annulus b/w two concennic lown on tal pipes

$$
\frac{d V_{z}}{d r}=0 \text { of } r_{2} r_{\text {max }}
$$

where tue Velocity is mavinumi

$$
\begin{aligned}
& \frac{1}{r} \cdot \frac{d}{d r}\left(r \frac{d v_{z}}{d r}\right)=\frac{1}{\mu} \frac{d p}{d z} \\
& \frac{r d^{\prime} r_{7}}{d r}=\frac{1}{\mu^{\mu}} \cdot \frac{d P}{d 7}\left(\frac{r^{2}}{2}-\frac{r_{\text {map }}^{2}}{2}\right)^{\ell}
\end{aligned}
$$

use thater.c. tor I ST intregeations

IM B.C.

$$
\begin{aligned}
& \text { B.C } v_{z}=0_{1}^{\prime} \quad \text { arr } r=r_{1} \\
& v_{z}=\frac{1}{2 \mu} \frac{d P}{d 7}\left(\frac{r^{2}}{2}-\frac{r_{1}{ }^{2}}{2}-r_{\text {max }}^{2} \ln \frac{r}{r_{1}}\right)
\end{aligned}
$$

olso $v_{z}=0$. जr $r=r_{2}$

$$
\begin{aligned}
& v_{z}=\frac{1}{2 \mu} \frac{d p}{d q}\left(\frac{r^{2}}{2}-\frac{r_{2}^{2}}{2}-r_{\text {nax }}^{2} \ln \frac{r}{r_{2}}\right) \\
& \quad v_{\text {raves }}=\sqrt{\ln \left(\frac{r_{2}}{r_{1}}\right) \frac{\left(r_{2}^{2}+r_{1}^{2}\right)}{2}}
\end{aligned}
$$

(61)

Ey. 3.8 .5
Greamicopinim Ascignnener
$\rho \& \mu$ ano constans Lammar flow.
Q. Find the shea strels and veloaity dertionation fortac frow

$V_{r}=V_{z}=0$, of s.s. $\frac{\partial P}{\partial t}=0$ No pressure gradenent in of dinection
\therefore equ of contimuity in cylentinel $\omega=$ rainata

The eq" of motion in cylinaincal crovedinetre

$$
\begin{aligned}
& -\rho \frac{r_{\theta}^{2}}{r}=-\frac{\partial p}{\partial r} \quad(r-\text { component })- \\
& 0=\frac{d}{d r}\left(\frac{1}{r} \frac{d\left(r V_{\theta}\right)}{d r}\right) \quad(\theta-\text { component }) \\
& 0=-\frac{\partial P}{\partial z}+\rho_{z} \quad(7 \text { - component })
\end{aligned}
$$

from 1 componeus

$$
v_{\theta}=c_{1} r+\frac{c_{2}}{r}
$$

B.C. $r=R_{1} \quad V \theta=0 ; \quad$ at $r=R_{2} ; V_{\theta}=W R_{2}$

$$
\begin{aligned}
& c_{1} R_{1}+\frac{c_{2}}{R_{1}}=0 \\
& W R_{2}=C_{1} R_{2}+\frac{c_{2}}{R_{2}}
\end{aligned}
$$

$$
\Rightarrow c_{2}=c_{1} R_{1}^{2}
$$

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{1}{r} \frac{\partial}{\partial r}(\text { prvr })+\frac{1}{r} \frac{\partial\left(\rho v_{0}\right)^{x}}{\partial \theta}+\frac{\partial\left(\rho v_{z}\right)^{\prime}}{\partial \partial z}=0 \\
& P \frac{\partial V \theta}{\partial \theta}=0
\end{aligned}
$$

(62)

$$
\begin{aligned}
& w R_{2}=c_{1} R_{2}-\frac{c_{1} R_{1}{ }^{?}}{R_{2}} \\
& \Rightarrow \quad c_{1}=\frac{w R_{2}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)} \quad ; \quad c_{2}=\frac{-w R_{1}^{2} R_{2}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)} \\
& \therefore V_{v}=c_{1} r+\frac{c_{2}}{r} \Rightarrow \frac{w R_{2}^{2} r}{\left(R_{2}^{2}-R_{1}^{2}\right)}-\frac{w R_{1}^{2} R_{2}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}} \cdot \frac{1}{r} . \\
& v_{0}=\frac{1}{r}\left(R_{1}^{2}-R_{2}^{2} R_{2}^{2}\right)-\frac{w R_{2}^{2} \cdot r}{\left(R_{1}^{2}-R_{2}^{2}\right)} \\
& \left.=\frac{\omega \frac{w}{\left(R_{1}{ }^{2}-R_{2}{ }^{2}\right)}\left[\frac{R_{1}{ }^{2} R_{2}{ }^{2}}{r}-\frac{R_{0}^{2}}{1} \cdot r\right]}{w R_{1} R_{2}^{2}}\right] \\
& v_{v}=\frac{w R_{1} R_{2}^{2}}{\left(R_{1}{ }^{2}-R_{2}^{2}\right)} \quad\left[\frac{R_{1}}{r}-\frac{r}{R_{1}}\right]
\end{aligned}
$$

SHEARSTRESS

$$
=-2 \mu \omega R_{2}^{2}\left(\frac{1}{\gamma_{0}^{2}}\right)\left[\frac{R_{1}^{2} / R_{2}^{2}}{1-R_{1}^{2} / R_{2}^{2}}\right]
$$

Torquie requived to ritate the cylvorer

$$
T=\left.\left(2 \pi R_{2} H\right)\left(-\tau_{r} \theta\right)\right|_{r=R_{2}} \cdot\left(R_{2}\right)
$$

$H \Longleftrightarrow$ Merght of the ulimer
Astigment es. $\frac{3.8 \cdot-6}{\text { geancopolich }}$
Q. $\frac{3 . f-6}{\operatorname{geam} 100}$

Ropaling had, in a cylustrical containes
Q. At steady stake fiom the
suope of the free suctaer

$$
p=p(r, r)
$$

Sol ${ }^{n}$

$$
\begin{align*}
& v_{r}=v_{z}=0, \quad \text { qr \& go } g_{0}=0, \quad \& g_{z}=-g \\
& \rho \frac{v_{v}}{r}=\frac{\partial p}{\partial r}-\quad(r-\text { component }) \tag{2}\\
& \theta=r \frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial\left(r v_{\theta}\right)}{r^{r}}\right) \quad(0 \text {-component }) \\
& \frac{\partial p}{\partial z}=-p g \quad(z \text {-compoment }) .
\end{align*}
$$

from sumarean

$$
v_{\theta}=c_{1} r+\frac{c_{2}}{r}
$$

at $r=0, \quad r_{0} \rightarrow$ finite thas $c_{2}=0$

$$
\begin{aligned}
\therefore \quad v_{\theta} & =c_{1} r \\
& v_{\theta}=w \cdot r
\end{aligned}
$$

$$
\text { also } \frac{\partial P}{\partial z}=-\rho g
$$

$$
d P=\frac{\partial P}{\partial r} \cdot d r+\frac{\partial P}{\partial \tau} \cdot d z
$$

$$
\begin{aligned}
& =p r \\
& =\rho w^{2} r \cdot d r+(-e g) \cdot d z \\
& \rho w^{2} r^{2} \quad e g z+c_{2}
\end{aligned}
$$

$$
p_{0}=\frac{\rho w^{2} r^{2}}{2}-e g z+c_{3}
$$

(64) at $z=$ to $P=P_{0} \& r=0$,

$$
p-p_{0}=\frac{p w^{2} r^{2}}{2}+\lg \left(z_{0}-z\right)
$$

For free swface $P=P_{0}$

$$
\begin{gathered}
f g\left(z-z_{0}\right)=\frac{g w^{2 r^{2}}}{2} \\
(z-70)=\frac{w^{2} r^{2}}{2 g} \quad \text { paransrecenn. }
\end{gathered}
$$

Other metinods for solution of differentiol equ of Motim

In eartier discustion Nasier. stanes eqnyweve fotwed andyfically where there was only one nonvarusling velociry component. For laso or nore thoun luo non-vaurhing componients the probliew becorves puore conglicted. Thi section constien some approsimition that fivplify the differentiot equs to restaims arolysieal soln.
Sprearm fuction:
$\psi(x, y)$ such thet $v_{x}=\frac{\partial \varphi(x, y)}{\partial y}$

$$
v_{y}=-\frac{\partial u}{\partial x}
$$

This defimation can le used lo olstan a dift enerfing eah for 4 thots is equivolars to Narier-strec. eqn
physich fignificarce of p : In oready flow lives 8 reeam lines are difur by $\psi=$ constans which ane dettion curse traced by the partsice of the thid.

A Stream ferelion exish for all two dimennonn sready, encomprestible flow, visurss/nviscoied rotalional/errotational
Epangde: Stream furction and fream lines consider 4 givess as $x \cdot y$. Fino the component of velocing. Alro plot the smeamlines for a corrtant $\psi=4 \ll \psi=1$

Now

$$
\begin{aligned}
& V_{x}=\frac{\partial \psi}{\partial y}=x \\
& V_{y}=-\frac{\partial \psi}{\partial x}=-y
\end{aligned}
$$

$\frac{\operatorname{case} 1}{4 r 1}=x y$

y	X
0.5	2
1.0	1
2.0	0.5
5.0	$0-2$

\rightarrow irrotakonnt. $\mu=0$
Potential flow and velocing pitensial (Φ) ar potentaldo. defue

$$
v_{x}=\frac{\partial \phi_{\lambda}(x, y)}{\partial x} \quad v_{y}=\frac{\partial \phi(x, y)}{\partial y}, \quad v_{3}=\frac{\partial \psi}{\partial z}(x, y)
$$

This portensian thow exast only for a Howwins zew angulai velocity, or uritationatity. Thin type of fow of en idreol/miscid flund conntant 93) is callied porentiod fow $\left[\begin{array}{l}\rho \text { conttant } \\ \mu \rightarrow 0 \\ \omega \rightarrow 0\end{array}\right]$ inviricid Potentid yew :- imotalional, nonvisuris, constant cenáy (muoupressbble
ϕ evint
4 doesu't exin
vorticing of a fenid:

$$
\begin{aligned}
& \frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}=2 w_{z} \\
& \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=\xlongequal{-2 w_{x}}
\end{aligned}
$$

(Standond depanesion)
vitaticityp w_{3} in 5^{-1} is angulas veloury abous the 2 asis.

If $2 \mathrm{nz}=0$ the fow is irrotation and a potentry frataibsa.
Corside $\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0$ or $\frac{\partial^{2} \phi}{2 x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 / \rho_{\rho}^{\text {for }}$ Loplarieqn it can be solved with suitabte for ϕ then v_{x} Pry canke colculated.
(646) likewise
for inviscets imptaltor feres
$\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial x^{2}}=0 \quad$ Laplue. squ for strea fr.
equer poterntal lines \rightarrow lines of contant. ϕ ano these live cuel to the liner of contank ψ evengwhere for potentid flow.

Proo.
difine

$$
d \varphi=\frac{\partial r}{\partial x} \cdot d x+\frac{\partial \mu}{\partial \mu} \cdot d y
$$

for constane $\psi \rightarrow d P=0$

$$
\left.\begin{array}{rl}
\therefore\left(\frac{\partial w}{\partial x}\right) /\left(\frac{\partial \psi}{\partial y}\right) & =-\frac{d y}{d x} \\
\text { wut } \frac{\partial p}{\partial x} & =-v y, \quad \frac{\partial \psi}{\partial y}=v x \\
& \therefore\left(\frac{d r}{d x}\right)_{y}
\end{array}=\text { cont }=\left(\frac{v y}{v x}\right)_{u \phi}\right)
$$

Aho torlines ot confot $\frac{\partial \phi}{\partial y} \cdot d y=0$

$$
\begin{aligned}
& \text { or }\left(\frac{d y}{d x}\right)=\frac{\partial \phi}{\partial x} \cdot d+\text { ount } x y \\
& \operatorname{los}\left(\frac{v_{y}}{v_{x}}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& V_{x} \cdot d x+V_{y} d y=0 \\
& \left(\frac{d y}{d x}\right)_{\varphi_{y}}=-\frac{V_{x}}{V_{y}}=-\frac{1}{-\left(\frac{d y}{d x}\right)_{\psi}}=\operatorname{const}
\end{aligned}
$$

(640)
constiten a path int the xyplamen suce tast $\psi=$ constant. Slory the, path $d \psi=0$.

$$
\frac{\text { velty }}{10-2} \quad\left(\frac{d \psi}{d+x}\right)_{y}=\text { wornt }=\left(\frac{v y y}{v x}\right)
$$

Thedr. 4 thas neprecty s a sheamfinelion.

Fig. Stream live a sreangh.
wetty Inviscied Irrotalional flowitount an enfurk (logity (1003)
Ex. of

$$
V_{2 e}
$$

shream for.
 uylimes.

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\delta \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \psi}{\partial v^{2}}=0 \\
& V_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, V_{\theta}=-\frac{\partial \psi}{\partial r}
\end{aligned}
$$

(Laplace eq Min y hatrul co ordinalie)

Foour B.C.S ard reamired to gilue it $\begin{gathered}(23 \cdot \operatorname{cour} \\ 2 \cdot n \cdot \cdot m y)\end{gathered}$
Now BC.'s

1. The circle $r=4$ must be, ftrearlin. Asthe velocity nound to a stream lim ens jewo

$$
\left.v_{1}\right|_{r=a}=0 \text { or }\left.\frac{\partial \psi}{\partial \theta}\right|_{r=a}=0
$$

(64)
2. Kom syrowethy the line $\theta=0$, mutr atro be a smeanliur

$$
\begin{array}{r}
\text { 2. Kom } 1_{\theta}=0 \text { or }\left.\frac{\partial \psi}{\partial r}\right|_{\theta=0}=0, ~ v e l o c i r y
\end{array}
$$

2. Ascr $\rightarrow \infty$ vust be finite
3. Solndr the loplocian ean in

$$
\theta(r, \theta)=v_{\infty}: r \sin \theta\left[1-\frac{a^{2}}{r^{2}}\right] \quad r^{2}=x^{2}+y^{2}
$$

The velocing couponems $V_{s} \& V_{\theta}$ are obtaned from eqn

$$
v_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}=v_{\infty} \cos \theta\left[1-\frac{a^{2}}{r^{2}}\right]
$$

$$
R_{\theta}=-\frac{\partial \psi}{\partial r}=-V_{\infty} \sin \theta\left[1+\frac{a^{2}}{r^{2}}\right]
$$

at $\gamma^{2}=a$, velocity of the supface oure

$$
\begin{aligned}
& v_{r}=0 \mathrm{~F} \\
& v_{0}=-2 v_{\infty} \sin \theta
\end{aligned}
$$

Notice no radion velvelity as the cyl. Surpace is a Streamlins.

Now of $\theta=0, \& \theta=180^{\circ}$
$V_{\theta}=0$, (stagnotion point)

The invisul, imotiliond sheady inworproesinte flow about ans infonise cyliedre

(ox, $3-9 r 2$
Geakoplost
Sreean fuxction for a flow fieldely valoci'y comp flora flum fiels arre

$$
d x=a\left(x^{2}-y^{2}\right)
$$

$$
r_{y}=-2 x y x
$$

Prove that i. Siliferd The consenvalion manam determine ψ
807^{m}
According to confinuilg-agh
$\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}=0$-(i) in two dimersond floo

$$
\frac{\partial x_{x}}{\partial x}=2 a x, \quad \frac{\partial v}{\partial y}=-2 a y
$$

Hence the eq (i) is sotsified

Now

$$
\begin{aligned}
& \frac{\partial \psi}{\partial y}=a x^{2}-a y^{2} \quad \text { unsegratein } \\
& \psi=a x^{2} y-\frac{a y^{3}}{3}+f(x)
\end{aligned}
$$

or deff. wert to x

$$
\begin{aligned}
\frac{\partial u}{\partial x}=2 \operatorname{arc} y-0+f^{\prime}(x) & =\left(-v_{y}\right) \\
& =2 x y
\end{aligned}
$$

therefor $f^{\prime}(x)=0$ or $f(x)=c$

$$
\therefore \quad \psi=a^{0} x^{2} y-\frac{a y^{3}}{3}+c
$$

To peor 4 cean be ses requy to bew

* Srean fors /prontion fr. gives flowprofiline in the main broby is the fherd and devesn't sabify $v_{y}=v_{y}=0$ on the wall Su-face:
Readsecin Brios Greauoblis

Dimeresion lass form of contimuity eqn and eqn of motion.

* We need dinsension less form for Seate-up of équipment -
let define

$$
\begin{aligned}
& \dot{x}=\frac{x}{l_{0}} \\
& \hat{y}=\frac{y}{l_{0}} \\
& \hat{z}=\frac{z}{l_{0}} \\
& \hat{x}=\frac{v}{v_{0}}
\end{aligned}
$$

lo is a chonacterstic lengh -
checes the ∇ operdor

$$
\begin{aligned}
& \nabla=\underline{i} \frac{\partial}{\partial x}+\underline{j} \frac{\partial}{\partial y}+\underline{k} \frac{\partial}{\partial z} \\
& l_{0} \nabla=i \frac{\partial}{\partial\left(\frac{x}{l_{0}}\right)}+\frac{j}{\partial\left(\frac{y}{l_{0}}\right)}+k \frac{\partial}{\partial\left(\frac{z}{l_{0}}\right)} \\
& \hat{\nabla}=i \frac{\partial}{\partial \hat{x}}+\hat{j} \frac{\partial}{\partial \hat{y}}+k \frac{\partial}{\partial \hat{z}} \\
& \sigma \\
& \hat{\nabla}=l_{0} \nabla
\end{aligned}
$$

For constant ρ and μ eq" of contivuily

$$
\begin{aligned}
& \nabla \cdot v=0 \\
& \left(\frac{\nabla}{l_{0}}\right) \cdot\left(\hat{v} \cdot v_{0}\right)=0 \quad 2 \frac{v_{0}}{l_{0}}(\hat{\nabla} \cdot \hat{v})=0
\end{aligned}
$$

(62b) $(\hat{\nabla} \cdot \hat{v})=0$
Eau of motion with constants and μ
force

$$
\begin{align*}
\left(\rho \cdot \frac{D v}{D t}\right. & =-\nabla p+\mu \nabla^{2} v+\rho g \tag{p++g}\\
& =-\nabla P+\mu \nabla^{2} v
\end{align*}
$$

Body force is

$$
\frac{D \underline{v}}{D \hat{t}}=-\hat{\nabla} \hat{\tilde{p}}\left[\frac{\mu}{\operatorname{lov} v_{0}}\right] \hat{\nabla}^{2} \hat{v}
$$

$$
\hat{t}=\frac{v_{0} t}{l_{0}} \quad \hat{p}=\frac{\rho-p_{0}}{\rho v_{0}^{2}}
$$ number

$$
\begin{aligned}
& \frac{D}{D \hat{t}}=\left(\frac{l o}{\sqrt{0 t}}\right) \frac{D}{D t} \\
& \nabla^{2}=\frac{\partial^{2}}{\partial \hat{x}^{2}}+\frac{\partial^{2}}{\partial \hat{y}^{2}}+\frac{\partial^{2}}{\partial \hat{z}^{2}}
\end{aligned}
$$

We $=\left|\frac{\sigma}{l_{0} v 0^{2} \rho}\right| \rightarrow$ Weber, Number

Transport Phenomena - Fluid Mechanics Problem : Radial flow of a Newtonian fluid between parallel disks

Problem.

Steady, laminar flow occurs in the space between two fixed parallel, circular disks separated by a small gap $2 b$. The fluid flows radially outward owing to a pressure difference $\left(P_{1}-P_{2}\right)$ between the inner and outer radii r_{1} and r_{2}, respectively. Neglect end effects and consider the region $r_{1} \leq r \leq r_{2}$ only. Such a flow occurs when a lubricant flows in certain lubrication systems.

Figure. Radial flow between two parallel disks.
a) Simplify the equation of continuity to show that $r v_{r}=f$, where f is a function of only z.
b) Simplify the equation of motion for incompressible flow of a Newtonian fluid of viscosity μ and density ρ.
c) Obtain the velocity profile assuming creeping flow.
ketch the velocity profile $v_{r}(r, z)$ and the pressure profile $P(r)$.
e) Determine an expression for the mass flow rate by integrating the velocity profile.
f) Derive the mass flow rate expression in e) using an alternative short-cut method by adapting the plane narrow slit solution.

Solution.

\ominus Click here for stepwise solution

a)

Step. Simplification of continuity equation

Since the steady laminar flow is directed radially outward, only the radial velocity component v_{r} exists. The tangential and axial components of velocity are zero; so, $v_{\theta}=0$ and $v_{z}=0$.

For incompressible flow, the continuity equation gives $\nabla . \mathbf{v}=0$.
In cylindrical coordinates,

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial v_{z}}{\partial z}=0 \quad \Rightarrow \quad \frac{\partial}{\partial r}\left(r v_{r}\right)=0 \tag{1}
\end{equation*}
$$

On integrating the simplified continuity equation, $r v_{r}=f(\theta, z)$. Since the solution is expected to be symmetric about
the z-axis, there is no dependence on the angle θ. Thus, f is a function of z only and not of r or θ. In other words, $r v_{r}$ $=f(z)$. This is simply explained from the fact that mass (or volume, if density ρ is constant) is conserved; so, ρ ($2 \pi r$ $\left.v_{r} d z\right)=d w$ is constant (at a given z) and is independent of r.
b)

Step. Simplification of equation of motion

For a Newtonian fluid, the Navier - Stokes equation is

$$
\begin{equation*}
\rho \frac{D \mathbf{v}}{D t}=-\nabla P+\mu \nabla^{2} \mathbf{v} \tag{2}
\end{equation*}
$$

in which P includes both the pressure and gravitational terms. On noting that $v_{r}=v_{r}(r, z)$, its components for steady flow in cylindrical coordinates may be simplified as given below.
r-component :

$$
\begin{equation*}
\rho_{\text {è }}^{\mathfrak{F}} v_{r} \frac{\partial v_{r} \ddot{\mathrm{o}}}{\partial r}{ }_{\varnothing}=-\frac{\partial P}{\partial r}+\mu_{\text {ë }}^{\text {é }} \frac{\partial}{\partial r} \mathfrak{\mathrm { e }} \frac{1}{r} \frac{\partial}{\partial r}\left(r v_{r}\right)_{\varnothing}^{\ddot{o}}+\frac{\partial^{2} v_{r} \text { ̀̀ }}{\partial z^{2}} \hat{\mathrm{u}} \tag{3}
\end{equation*}
$$

θ - component :

$$
\begin{equation*}
0=\frac{\partial P}{\partial \theta} \tag{4}
\end{equation*}
$$

z-component :

$$
\begin{equation*}
0=\frac{\partial P}{\partial z} \tag{5}
\end{equation*}
$$

Recall that $r v_{r}=f(z)$ from the continuity equation. Substituting $v_{r}=f / r$ and $P=P(r)$ in equation (3) then gives

$$
\begin{equation*}
-\rho \frac{f^{2}}{r^{3}}=-\frac{d P}{d r}+\frac{\mu}{r} \frac{d^{2} f}{d z^{2}} \tag{6}
\end{equation*}
$$

c)

Step. Velocity profile

Equation (6) has no solution unless the nonlinear term (that is, the f^{2} term on the left-hand side) is neglected. Under this 'creeping flow' assumption, equation (6) may be written as

$$
\begin{equation*}
r \frac{d P}{d r}=\mu \frac{d^{2} f}{d z^{2}} \tag{7}
\end{equation*}
$$

The left-hand side of equation (7) is a function of r only, whereas the right-hand side is a function of z only. This is only possible if each side equals a constant (say, C_{0}). Integration with respect to r from the inner radius r_{1} to the outer radius r_{2} then gives $P_{2}-P_{1}=C_{0} \ln \left(r_{2} / r_{1}\right)$. On replacing C_{0} in terms of f,

$$
\begin{equation*}
0=\left(P_{1}-P_{2}\right)+\underset{\mathrm{e}}{æ} \mu \ln \frac{r_{2}}{r_{1}} \varnothing \frac{\ddot{\partial}}{\varnothing} \frac{d^{2} f}{d z^{2}} \tag{8}
\end{equation*}
$$

The above equation may be integrated twice with respect to z as follows.

$$
\begin{gather*}
\frac{d f}{d z}=\frac{-\Delta P}{\mu \ln \left(r_{2} / r_{1}\right)} z+C_{1} \tag{9}\\
f=\frac{-\Delta P}{2 \mu \ln \left(r_{2} / r_{1}\right)} z^{2}+C_{1} z+C_{2} \quad \Rightarrow \quad v_{r}=\frac{-\Delta P}{2 \mu r \ln \left(r_{2} / r_{1}\right)} z^{2}+C_{1} \frac{z}{r}+\frac{C_{2}}{r} \tag{10}
\end{gather*}
$$

Here, $\Delta P \equiv P_{1}-P_{2}$. Equation (10) is valid in the region $r_{1} \leq r \leq r_{2}$ and $-b \leq z \leq b$.
Imposing the no-slip boundary conditions at the two stationary disk surfaces ($v_{z}=0$ at $z= \pm b$ and any r) gives $C_{1}=0$ and $C_{2}=\Delta P b^{2} /\left[2 \mu \ln \left(r_{2} / r_{1}\right)\right]$. On substituting the integration constants in equation (10), the velocity profile is ultimately obtained as

$$
v_{r}=\frac{\Delta P b^{2}}{2 \mu r \ln \left(r_{2} / r_{1}\right)} \quad \stackrel{\text { é }}{\text { é }} 1-\frac{\text { æ } z \overline{\mathrm{e}} \bar{b} \not \ddot{\mathrm{o}}^{2} \text { ù } \mathrm{u}}{\text { ù }}
$$

d)

Step. Sketch of velocity profile and pressure profile

The velocity profile from equation (11) is observed to be parabolic for each value of r with $v_{r, m a x}=\Delta P b^{2} /[2 \mu r \ln$ $\left.\left(r_{2} / r_{1}\right)\right]$. The maximum velocity at $z=0$ is thus inversely proportional to r. In general, it is observed from equation (11) that v_{r} itself is inversely proportional to r. Sketches of $v_{r}(z)$ for different values of r and $v_{r}(r)$ for different values of $|z|$ may be plotted.

The pressure profile obtained by integrating the left-hand side of equation (7) is $\left(P-P_{2}\right) /\left(P_{1}-P_{2}\right)=\left[\ln \left(r / r_{2}\right)\right] /$ $\left[\ln \left(r_{1} / r_{2}\right)\right]$. A sketch of $P(r)$ may be plotted which holds for all z.
e)

Step. Mass flow rate by integrating velocity_profile

The mass flow rate w is rigorously obtained by integrating the velocity profile using $w=\int \mathbf{n} . \rho \mathbf{v} d S$, where \mathbf{n} is the unit normal to the element of surface area $d S$ and \mathbf{v} is the fluid velocity vector. For the radial flow between parallel disks, $\mathbf{n}=\boldsymbol{\delta}_{r}, \mathbf{v}=v_{r} \boldsymbol{\delta}_{r}$, and $d S=2 \pi r d z$. Then, substituting the velocity profile from equation (11) and integrating gives

$$
\begin{equation*}
w=\int_{-b}^{b} \rho v_{r}(2 \pi r) d z=\frac{\pi \Delta P b^{2} \rho}{\mu \ln \left(r_{2} / r_{1}\right)}{\stackrel{\text { é }}{ }{ }^{\mathrm{e}}}_{z}-\frac{z^{3}}{3 b^{2}} \hat{\mathrm{u}}_{-b}^{b}=\frac{4 \pi \Delta P b^{3} \rho}{3 \mu \ln \left(r_{2} / r_{1}\right)} \tag{12}
\end{equation*}
$$

Step. Mass flow rate using short-cut method by adapting narrow slit solution
The plane narrow slit solution may be applied locally by recognizing that at all points between the disks the flow resembles the flow between parallel plates provided v_{r} is small (that is, the creeping flow is valid).

The mass flow rate for a Newtonian fluid in a plane narrow slit of width W, length L and thickness $2 B$ is given by w $=2 \Delta P B^{3} W \rho /(3 \mu L)$ (click here for derivation). In this expression, $(\Delta P / L)$ is replaced by $(-d P / d r), B$ by b, and W by $2 \pi r$. Note that mass is conserved; so, w is constant. Then, integrating from r_{1} to r_{2} gives the same mass flow rate expression [equation (12)] as shown below.

$$
\begin{equation*}
w \int_{r_{1}}^{r_{2}} \frac{d r}{r}=\frac{4 \pi b^{3} \rho}{3 \mu} \int_{P_{1}}^{P_{2}}(-d P) \quad \Rightarrow \quad w=\frac{4 \pi\left(P_{1}-P_{2}\right) b^{3} \rho}{3 \mu \ln \left(r_{2} / r_{1}\right)} \tag{13}
\end{equation*}
$$

This alternative short-cut method for determining the mass flow rate starting from the narrow slit solution is very powerful because the approach may be used for non-Newtonian fluids where analytical solutions are difficult to obtain.

Related Problems in Transport Phenomena - Fluid Mechanics :
Transport Phenomena - Fluid Mechanics Problem : Newtonian fluid flow in a parallel - disk viscometer ermination of the tangential velocity profile rather than the radial velocity profile for flow between two parallel, circular disks

UNIT -III

Unsteady stake momentum trans port:
Our intevert may be in the region of transition where the change is w.r.t. time and space.

$$
\text { recall } \frac{\partial T}{\partial t}=\alpha \frac{\partial^{2} T}{\partial x^{2}} \quad \text { or } \frac{\partial c}{\partial t}=D \frac{\partial^{2} C}{\partial x^{2}}
$$

Flow near a wall suddrely set in motion: consider a secuimfinite body of liquid, with constant ρ and 14 ploeed above a horizontal suffice. Initially they are of resh and $t=0$ the sold surface is set in motion. Final the velocity $i x$ as function of y and A. There is no pressure gradient or gravity tore in x direction. Consider the flow is laminar

Notice $v_{x}=v_{x}(y, t), v_{y}=0, v_{z}=0$ (unidirectional flows

$$
\begin{aligned}
& \text { Let's apply en of motion } \\
& \begin{aligned}
f\left(\frac{\partial v_{x}}{\partial t}+v_{x} \frac{\partial v_{x} 7^{0}}{\partial x}+v_{y}^{2} \frac{\partial v_{y}}{\partial y}+y_{z}^{\prime} \frac{\partial v_{z}}{\partial z}\right) & =-\frac{\partial p^{\lambda^{0}}}{\partial x}-[\nabla \cdot \tau]+\rho \hat{\rho}_{\partial x}^{\left(g_{x}=0\right)} \\
& =\mu \frac{\partial^{2} v_{x}}{\partial y^{2}}
\end{aligned}
\end{aligned}
$$

(66)

$$
\begin{aligned}
& \rho \frac{\partial v_{x}}{\partial t}=\mu \frac{\partial^{2} v_{x}}{\partial y^{2}} \\
& \Rightarrow \frac{\partial v_{x}}{\partial t}=\frac{\mu}{\rho} \frac{\partial^{2} v_{x}}{\partial y^{2}} \Rightarrow \frac{\partial v_{x}}{\partial t}=\nu \frac{\partial^{2} v_{x}}{\partial y^{2}}
\end{aligned}
$$

$\nu \rightarrow$ kinematic wresity
What Bound ar conditions to we have?

$$
v_{x}=v_{u}(y, t)
$$

Initial condition
(a) $t \leqslant 0 \quad v_{x}=0$ for all y

BC. 1
at $y=0$,

$$
v_{x}=v_{0} \forall t>0
$$

$B \cdot C \cdot 2$ at $y=\infty$

$$
V_{x}=0 \quad \forall t>0
$$

suit by combination of variable method. This method is particularly useful when the problem is posed in a semi infinite domain.
define $\phi=\frac{v_{x}}{v_{0}}$
thus we have from $\frac{\partial v x}{\partial t}=\nu \frac{\partial^{2} v x}{\partial y^{2}}$

$$
\frac{\partial \phi}{\partial t}=\nu \frac{\partial^{2} \phi}{\partial y^{2}}
$$

This is a PDE. ans l needs to be converted into an ODE. To do this letris rewrite the BUGS \& IC.

$$
\phi(y, 0)=0, \quad \phi(0, t)=1, \quad \phi(\infty, t)=0
$$

$\phi=\phi(\eta) \quad \eta \rightarrow$ dinreension less
as $\phi \rightarrow$ dinseuraron less.

$$
\xi \eta=\frac{y}{\sqrt{4 \nu t}}
$$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial t}=\frac{d \phi}{d \eta} \cdot \frac{\partial \eta}{\partial t} \\
& \text { now } \\
& \frac{\partial \eta}{\partial t}=-\frac{1}{2} \frac{\eta}{t}
\end{aligned}
$$

then

$$
\frac{\partial \phi}{\partial t}=-\frac{1}{2} \frac{\eta}{t} \cdot \frac{d \phi}{d \eta}
$$

$$
\begin{aligned}
& \text { likenise } \\
& \frac{\partial \phi}{\partial y}=\frac{d \phi}{d \eta} \cdot \frac{\partial \eta}{\partial y}=\frac{1}{\sqrt{4 \nu t}} \cdot \frac{d \phi}{d \eta} \\
& \frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{d \phi}{d \eta} \cdot \frac{1}{\sqrt{4 \nu t}}\right)=\frac{2}{\sqrt{4 \nu t}} \frac{\partial}{\partial y}\left(\frac{d \phi}{d \eta}\right)+\frac{d \phi}{d \eta} \cdot \frac{\partial}{\partial y}\left(\frac{1}{\sqrt{4 \nu t}}\right) \\
& =\frac{1}{\sqrt{H \nu t}} \frac{d}{d \eta}\left(\frac{d \phi}{d \theta}\right) \cdot \frac{\partial \eta}{\partial y}=\frac{1}{\sqrt{4 \nu t}} \cdot \frac{d^{2} \phi}{d \eta^{2}} \cdot \frac{\partial \eta}{\partial y} \\
& =\frac{1}{\sqrt{4 \nu t}} \cdot \frac{d^{2} \phi}{d \eta^{2}} \cdot \frac{1}{\sqrt{4 \nu t}}=\frac{1}{4 \nu t} \cdot \frac{d^{2} \phi}{d \eta^{2}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& -\frac{1}{2} \frac{\eta}{t} \frac{d \phi}{d \eta}=\nu \cdot \frac{1}{4 \nu t} \cdot \frac{d^{2} \phi}{d \eta^{2}} \\
& \frac{d^{2} \phi}{d \eta^{2}}+2 \eta \frac{d \phi}{d \eta}=0 \quad \text { An OD.E. }
\end{aligned}
$$

Bris can now be written as
@

$$
\begin{array}{ll}
\eta=0 & \phi=1 \\
\eta=\infty & \phi=0
\end{array}
$$

Now let $\frac{d \phi}{d \eta}=\psi$
then

$$
\frac{d \psi}{d \eta}+2 \eta \psi=0
$$

gives $\psi=c_{1} \exp \left(-\eta^{2}\right)$ standard form of eq.

$$
\psi=\frac{d \phi}{d \eta}=q \exp \left(-\eta^{2}\right)
$$

thus

$$
\phi=c_{1} \int_{0}^{\eta} \exp \left(-\bar{\eta}^{2}\right) d \bar{\eta}+c_{2}
$$

$\bar{\eta}$ variable of integration

$$
\begin{aligned}
& \text { Using the B.C. } \\
& \phi(\eta)=1-\frac{\int_{0}^{\eta} \exp \left(-\bar{\eta}^{2}\right) d \bar{\eta}}{\int_{0}^{\infty} \exp \left(-\bar{\eta}^{2}\right) d \bar{\eta}} \\
& =1-\frac{2}{\sqrt{\pi}} \int_{0}^{\eta} \exp \left(-\bar{\eta}^{2}\right) d \bar{\eta} \\
& =1-\operatorname{erf}(\eta) \text { crore function, for dental. } \\
& \text { refer to appendix c-6 } \\
& \begin{array}{c}
s \text { refer to appendix c-6 } \\
\text { of Bird. }
\end{array} \\
& \phi_{n}=\frac{v_{x}(y, t)}{v_{0}}=1-\operatorname{erf}\left(\frac{y}{\sqrt{4 \nu} t}\right) \\
& \eta \rightarrow \text { called coupplementany } \\
& \text { error function } \\
& \text { Note erf(x) has value }=0.99 \\
& \text { when } x=2 \\
& \text { Nearto plate }
\end{aligned}
$$

Noticetinat for $\eta=2.0, \quad \frac{v_{x}}{v_{0}}=0.01$
which is the extent on Bownd ay layen penetralion
thenefore

$$
\begin{aligned}
& \frac{20}{2}=\frac{y}{\sqrt{4 v t}} \\
\therefore & \delta=4 \sqrt{2 t}
\end{aligned}
$$

$$
y=\delta
$$

Chapfer-6 Rird.
finction tactor and equationptir
flowarous abject

Proadly, there one livo-categones of How
(a) Flow in hamel \&iupe fow, puping oul turys wate' flas is open
(b) charnel Flaw aroun an onjec. t ous anoue anplam
\longrightarrow Sedmentalion. \rightarrow Flow arrositube biants
For clans I \rightarrow relationship 6/NO Vot flowrate pressure ofpa is importan

Forclar II \rightarrow selation b/w the approachi velocity of the flend and the deag firce on the ohrect
Not alurgs eany to find velocily awe fo
repetionslip particularly. if the thowsin twer ternbuters. or the geomemis is complecertand
For such rystem expeginest sue perforned avd correlation of dirveusion ben vaiadres. ms contmacred

Frichion Factor:
conside tue heaby tho of a constants ρ Thund (a) in a'scondul. (b) arrura a tubweyged Ohiectr thear has an alets of bymmeny or lur plaven of symmeny

Two types of forces wiel be exented on The sampace by the ferid fevir
(d) Fs \longrightarrow Force even when the thino in stalimay
(b) fk \rightarrow force when thenia is in motion
$\mathrm{Fu} \propto \mathrm{A}$ (Chemacteriotic Alied)
$\propto k$ (chenactasititic biretic eneyy (wot.) dynamic pressune.
$F_{u}=A \cdot k \cdot f \longrightarrow$ trichion foutor bernee to tyfur $t \rightarrow$ need to dyp. A $8 K$
case. Flow in conduin:
$A \rightarrow$ wetted supare (2ARL)
 $f_{k}=2 \pi R L$ ($\left.L, \rho V_{a n}{ }^{2}\right)$. If the sujface.
"Speciolly for circullar tubs

$$
\left.\left.\begin{array}{rl}
& =\left(P_{0}-P_{L}\right) \\
t & =\frac{\pi}{C}\left(\frac{P_{0}}{2 L}(L)\right. \\
V
\end{array}\right)\right]
$$

Tohn Thomas
famving frickon fractor
$f D=4 f \rightarrow$ Darcy's triction fretor (1837taningt ciril
case $\pi \rightarrow$ (Mostly useduy Menvinico \&fors.)
Flow a row a submeigees striest.
Here yie are considering the folling of sphere into
of $F_{l k}=$ granitalion force - Ruyoncy free

$$
=4 / 3 \pi R^{3} \cdot \rho_{s} \cdot g-4 / 3 \pi R^{3} \cdot p_{l} \cdot g
$$

$$
=u_{3} \pi r^{3} \cdot g\left(P_{S}-P_{L}\right) \text { Thi appled }
$$

(A is whally the profected
$\forall \infty \rightarrow$ larpe distance prom the offien
Alo \uparrow area iscase,
$f x=\left(\pi R^{2}\right)\left(\sum \rho_{0} b_{x}^{2}\right) \cdot f$
drag $_{\text {wedt }} \quad \epsilon f=4 / 3 \mathrm{gD} / \mathrm{V}_{\infty}^{2}\left(\frac{\rho_{s}-\rho_{l}}{\rho_{t}}\right)$

$$
\begin{aligned}
& \frac{f k}{\text { force barnce in tue }} \frac{2 \pi R L}{}\left(k \rho V_{n-2}\right) \text {. Inection or thow in giver }
\end{aligned}
$$

(71) To find the dependency of it on hyordynamic property we need a non wimension el equ. So letis Friction tactore for flow in Tubes. esamine.

Cormalier stedy solie tow Louns / turbuthens.
Therefore torce in z direction a the innerwaliong z dreerim is tive deve to terbearect flueturtion. In tammar feow $f k$ is incepentert of lim

$$
f(t)=\frac{\left.\int_{0}^{l} \int_{0}^{2 \pi}\left(-\mu \frac{\partial z}{\partial \gamma}\right)\right|_{r}=R}{2 \pi R l\left(\frac{1}{2} \rho\left(N_{z}\right)^{2}\right)}
$$

Letus define $\underset{\underline{*}}{\gamma}=\underset{\substack{V_{D}}}{V_{z}}, \quad z=z / D, v_{r}=\frac{v_{z}}{\left\langle v_{z}\right\rangle}$

$$
\begin{aligned}
& t=\frac{\left\langle v_{7}\right\rangle \cdot t}{D .} \quad \frac{w}{P}=\frac{P-P_{0}}{f\left(v_{7}\right)^{2}} \quad \& R_{0}=\frac{D\left(v_{7}\right) P}{\mu} \\
& \left.f(t)=\frac{1}{\pi} \frac{2}{L} \frac{1}{R_{e}} \int_{0}^{L_{n}} \int_{0}^{2 \pi}\left(-\frac{\partial V_{t}^{*}}{\partial \ddot{\gamma}}\right)_{V=Z} d \theta \cdot d \vec{z}\right)
\end{aligned}
$$

volid for Laminon / Tubbeytens flow in circitan tubes
solution of, these eqn wils apporoprate B. CA leads that lo
L.H.S
$f(\tilde{t})=f($ Re, L/D,
t)
is equal to tionten tis
The diment if we use timx ang o星 then velocity
gradient
over f (Re, 4D)
the
Lurface fur then if the tube is supficiently
 in which dreng drog sepends
imponel inprousfice

$$
f=f l R e
$$

Le enrale Le \qquad Re (Laininas flow) $D<v>P$ for \rightarrow regior lagh

$$
\text { Le }=60 D
$$

Forlanin as fero

$$
\left.\frac{\rho_{0}-\rho_{L}}{1 / 2 \rho\langle v\rangle^{2}}\right]
$$ ve. f wownate forstipanote D, P, レ, P, μ,

$$
f=1 / u(D / L) \quad e^{n}(A)
$$

 for tamoreor feas

$$
f=\frac{1 b}{R_{e}}, \quad \begin{array}{cc}
R e & \\
\text { colculare } 7 \text { usity presure usin }
\end{array}
$$ exlowrre ototeusins eq" (A) Cor (R) and their generate gapp.

$$
\begin{aligned}
& f=1 / K \quad \phi / L\left[\frac{32 \mu\langle u\rangle t}{D^{2}\left\{P\langle v\rangle^{2}\right.}\right] \\
& =\frac{16 \mathrm{M}}{\rho\langle V\rangle \rho}=\frac{16}{\operatorname{Re}}
\end{aligned}
$$

For turbutent feow \rightarrow Rkesims formula

$$
f=\frac{0.0791}{\operatorname{Re}(\sqrt{4})} \quad 3.1 \times 10^{3}<R_{e}<10^{5}
$$

For smoth lory cinculen tube,

$$
\frac{1}{\sqrt{f}}=410 \log _{10} \operatorname{Re} \sqrt{f}-0.4 \quad 2.3 \times 10^{3}<R_{e}<4 \times 10^{6}
$$

Prandle tormila
For eough pipes $\left(\begin{array}{l}\text { doshed cunven) } \\ \frac{1}{S f}=-3.6 \log _{10}\end{array} \frac{6.9}{\operatorname{Re}}+\frac{(k / D)^{10 / 9}}{3.7}\right]\left\{\begin{array}{l}4 \times 10^{4}<\operatorname{Re}<10^{8} \\ 0<K_{1}<0.05\end{array}\right\}$
Q.6.2.1

What pressure prodrent is read, is cause - conpow A, to tow in a horizontal Smolt, circular tube, $D=3 \mathrm{~cm}$, at a mams scow rate of $1028^{\prime} 8 / \mathrm{s}$ at $20^{\circ} \mathrm{C}$. At this temp. The density of A xis $\rho=0.935$ g/ and $a \mu=1.95 \mathrm{cp}$

80 m

$$
\begin{aligned}
& \text { Re density of } A \text { is } \rho=0.4 s 3 \\
& R_{e}
\end{aligned}=\frac{\left.D<v_{z}\right) \rho}{\mu}=\frac{\Delta \omega}{\left(\pi D^{2} / 4\right) \mu}=\frac{40}{\pi D \mu}
$$

from fig $\frac{f=0.0063 \text {. for thin } R \text { Re for }}{\text { fobs }}$ Smorth tabes

$$
\begin{aligned}
& \therefore\left(\frac{P_{0}-P_{L}}{L}\right)=\left(\frac{4}{D}\right)\left(\frac{1}{2} \rho\left(v_{z}\right)^{2} \cdot\right] f=\frac{2}{D} \rho\left(\frac{a \omega}{\pi D^{2} \rho}\right)^{2} f \\
& =\frac{32 \omega^{2} f}{\pi^{2} D^{5} \rho}=\frac{32(1028)^{2}(0.0063)}{\pi^{2}(3.0)^{5}(0.935)} \\
& \left.=a s \text { (dye } / \mathrm{cm}^{2}\right) / \mathrm{cm}^{2} \\
& =0.071 \text { (ming)an) }
\end{aligned}
$$

cheque problem No. 6.2 .2 Bird

Finction foutors for flow around spheses:

Nownal fore

$$
f_{k}=\left(F_{n}-\left(F_{s}\right)+F_{t} \rightarrow \infty\right.
$$

Force

$$
=\text { Fform }+ \text { Ffriction }
$$

$$
F_{n} \rightarrow \text { norma }
$$

$f=$ frorm + iffriction
$F_{t} \rightarrow$ tandantiolforce

$$
F_{\text {form }}=f_{\text {form }} \cdot A \cdot k,, \quad f_{\text {friction }}=f_{\text {friction }} \cdot A \cdot k
$$

kinetic force $F_{\underline{K}}=F_{\text {form }}+$ Friction $=$
$F_{\text {form }}^{\stackrel{\text { duet to }}{ } \stackrel{\left(E_{n}-F_{s}\right)}{\Rightarrow} \text { Pressure force } \hookrightarrow F_{t \text { tangential }} \text { force }}$
Friction \Rightarrow Viscous fores

$$
\operatorname{Fform}(t)=\int_{0}^{2 \pi} \int_{0}^{\pi}\left(-\left.\rho\right|_{r=R} \cos \theta\right) R^{2} \sin \theta d \theta d \phi
$$

and

$$
\begin{gathered}
\text { and } \\
\text { F friction }(t)=\int_{0}^{2 \pi} \int_{0}^{\pi}\left(-\mu\left[\left.\frac{\partial}{\partial r}\left(\frac{v \theta}{r}+\frac{1}{\gamma} \frac{\partial \sigma_{r}}{\partial \theta}\right)\right|_{r=R} \sin \theta\right) R^{2} \sin \theta d \theta d \theta\right] \\
\hline
\end{gathered}
$$

Note that total force acting in zodirection will be

$$
=F_{n}+F_{t}
$$

However ifs part of Fin remains present even Whin the thud is stationary, Thus $f_{k}=\left(f_{n}-\mathrm{F}_{s}\right)+\mathrm{f}_{\mathrm{t}}$

$$
\begin{aligned}
& f_{\text {form }}\left(\tilde{t}^{N}\right)=\frac{2}{\pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(-\left.\tilde{\rho}\right|_{\check{r}=1} \cos \theta\right) \sin \theta d \theta d \phi \\
& f_{\text {friction }}\left(t^{\pi}\right)=-\left.\frac{4}{\pi} \frac{1}{R_{e}} \int_{0}^{2 \pi} \int_{0}^{\pi}\left[\tilde{r} \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{\dot{r}}\right)\right]\right|_{\tilde{\gamma}=1} \sin ^{2} d \theta d \phi
\end{aligned}
$$

The dimensionless variables are

$$
\dot{\rho}=\frac{\rho}{\rho v_{\infty}^{2}} ; \quad \vec{v}_{0}=\frac{v_{\theta}}{v_{\infty}} ; \quad \vec{\gamma}=\frac{r}{R} ; \quad \vec{t}=\frac{v_{\infty} t}{R}
$$

Reynolds number $R_{e}=\frac{D v_{\infty} f}{\mu}$
Based on prenons arguments
we can conclude that

$$
f=(R e)
$$

$75 b$
Comparison

Flow is tubes

* well te fined transition from laminar to turbo lent at about. $R_{e}=2100$
* The only contribution to f is friction
* Nobomadary layer Separation

Flow around Sphere No weld defined transition
$f=$ form friction + skinfoction

There is a kink in $f \sim \mathrm{Re}$ curve associated with a shift in the Separation zone

$f v s R_{e}$
Friction factor (drag weffecient) μ for spheres moving relative to a fluid with velocity V_{∞}.
(known as Nestors lav of Resistance)

For the creeping flow region we already know that the drag force is given by Stokes last which is consequence of solving eq n of continuity a eqn of motion without $\frac{\rho D}{D t}$ term) (See sect 2.6 , pored on creeping flown) from the ire it -is noted that

$$
F^{(n)}=\underbrace{\frac{4}{3} \pi R^{3} \rho g+\underbrace{\mu \pi R v_{\infty}}_{\substack{\text { form } \\ \text { Part }}} \text { (rag }}_{\substack{\text { Buyoncy } \\ \text { force } \\ \text { part }}}
$$

normal forces are obtewned by integration of $\left.\left(-P+T_{r r}\right)\right|_{o=R}$

Radius of sphere: R Atevey point there are Pr. \& friction forces acting on the Sphere surface

Fluid appraches from below with velocity v_{∞}

At each point on the surface of the sphere the found exerts a force/unit aka on the solid

$$
=F^{(n)}=-\left.\left(p+\tau_{\gamma r}\right)\right|_{V=R}
$$

Which acts normal to the surface
-ives sign is kept, a's the sphere is in the region of lessen ' r ' and fluid in the

From region of higher 'r'
Integration of normal bonce: - [rom sect' 2.6]

The z component of force ins the direction of
flow is $=-\left.\left(p+\tau_{r r}\right)\right|_{r=} R^{\cos \theta} \mu^{t}$
Nowt gal-the normal force on the surface element let's multiply is. by a differential surface elements $R^{2} \sin \theta d \theta d$, which in 1 to

the r direction (see FigAB .2 Bird)
Then integrate over the surface of the sphere to ger the resultans-normal force
in z-direction:

$$
\begin{aligned}
& \text { in z-direction: } \\
& \left.F^{(n)}=\int_{0}^{2 \pi} \int_{0}^{\pi}-\left(\left.\left(t_{0}^{r}+c r_{r}\right)\right|_{r=R} \cos \theta\right) R^{2} \sin \theta d V_{r=0}\right)\left.\right|_{r=R} \cdot d \theta \\
& \text { is pressure for away in the } p l
\end{aligned}
$$ intros sphere

$$
\begin{aligned}
& \text { where }\left.\right|_{r=R}=p_{0}-\rho g R \cos \theta-\frac{3}{2} \frac{\mu v_{\infty}}{R} \cos \theta- \\
& C_{r r}=-2 \tau \theta \theta=-2 \tau_{\phi \theta}=\frac{3 \mu v_{\infty}}{R}\left[-\left(\frac{R}{r}\right)^{2}+\left(\frac{R}{r}\right)^{4}\right] \\
& T_{r \theta}=\tau_{\theta r}=\frac{3}{2} \frac{\mu v_{\infty}}{R}\left(\frac{R}{r}\right)^{4} \sin \theta
\end{aligned}
$$

Note: that normal shes for this flow (Cr, $700, T \phi \phi$) are non zeno except at $r=R$ ie. at sphere surface where the velocity of thin is, gin. further, because of the symmetry around z-axis the resultant force will be in 3 direction.

Substitution of p in $f^{(n)}$ eq n yields on integration.
that $b_{0} \rightarrow 0$
$\rho \mathrm{g}$ term \rightarrow Bugomly force
μV_{∞} term \longrightarrow form drag. L
So $f^{(n)}$ becomes

$$
\rightarrow F^{(n)}=\frac{\overline{4}^{3} \pi R^{3}}{3} \rho g+\underbrace{2 \pi \mu R V_{\infty}}_{\square}
$$

-fin of tangential form dreg
since.

$$
\begin{aligned}
& \left.\operatorname{tr} \theta\right|_{r=R}=\frac{3 \mu v_{\infty}}{2} \sin \theta \\
& \xrightarrow{4 \pi \mu R v_{\infty}} \text { frictional drag }
\end{aligned}
$$

$$
\therefore F^{(t)}=\underbrace{4 \pi \mu R v_{\infty}}
$$

Thee total truce thus becorves

$$
\begin{aligned}
& F=F^{(n)}+F^{(t)} \\
& \begin{array}{l}
=\frac{4}{3} \pi R^{3} \rho g+\underbrace{2 \pi \mu R V_{D}}_{\text {Bugent }}+\frac{4 \pi \mu R v_{\infty}}{\text { formarag }}+\frac{\text { friction }}{\text { drag }}
\end{array} \\
& F_{K}=6 \pi \mu R V_{\infty} \quad \frac{\text { STOKES LAW }}{\text { for }} R_{e}<0.1
\end{aligned}
$$

$$
\begin{aligned}
& F^{(t)}=\int_{0}^{2 \pi} \int_{0}^{\pi}(\underbrace{\left.l_{r \theta}\right|_{r=R} \sin \theta}) R^{2} \sin \theta d \theta d \phi \\
& \Rightarrow \text { elemental } \\
& \text { area. } \\
& \vec{z} \text {-component of } \\
& \text { the tangential } \\
& \text { force/area }
\end{aligned}
$$

Rearranging

$$
\begin{aligned}
F_{K} & =6 \pi \mu R V_{\infty}=A \cdot k \cdot f \\
& =\frac{6 \pi R^{2}}{R} \cdot \mu V_{\infty} \cdot \frac{V_{2} \rho v_{\infty}^{2}}{\xi \rho V_{\infty}^{2}} \\
& =\frac{24 \pi R^{2}}{D} \cdot \frac{\mu V_{\infty}}{\left(\rho V_{\infty}\right)^{2}} \cdot\left(\xi \rho v_{\infty}^{2}\right) \\
& =\frac{24 \pi R^{2}}{D} \cdot\left(\frac{\mu}{\rho V_{\infty}}\right) \cdot\left(\xi \rho V_{\infty}^{2}\right) \\
& =\frac{24}{\frac{D v_{\infty} \rho}{\mu}} \cdot\left(\pi R^{2}\right) \cdot\left(\xi \rho v_{\infty}^{2}\right) \\
& =\frac{\bar{f}}{\bar{A}} \quad \overline{\bar{k}} \\
\therefore f & =\frac{24}{R e} \quad R e<0 \cdot 1
\end{aligned}
$$

for creeping flow
Another relation

$$
f=\left(\sqrt{\left.\frac{24}{\operatorname{Re}}+0.5407\right)^{2} \quad \operatorname{Re}<6000}\right.
$$

$\&$

$$
f=0.44 \quad 5 \times 10^{2}<\operatorname{Re}<10^{5}
$$

\square Newtons law of Resistance: According to this low dragforce is α to the square of approach velocity
Q. Determination of the diameter of a falling sphere glass sphere $\rho_{\text {ph }}=2.62 \mathrm{~g} / \mathrm{cm}^{3}$, cole at $20^{\circ} \mathrm{C}$ $\rho \rightarrow 1.59 / \mathrm{cm}^{3} \mu \rightarrow 9.58$ milipoise. Find the dit or the sphere to have $V_{\infty}=65 \mathrm{~cm} / \mathrm{s}$.
consider; the eq for flow around a sphene

$$
f=\frac{4}{3} \frac{D g}{V_{\infty}{ }^{2}} \cdot\left(\frac{\rho_{s}-\rho_{l}}{\rho_{l}}\right)
$$

Since we have of v_{s} Re cums, so let's rearrange the above eq.

$$
\begin{aligned}
\frac{f}{R_{e}} & =\frac{4}{3} \frac{g \mu}{\rho v_{\infty}^{2}}\left(\frac{\rho_{s}-\rho_{l}}{\rho_{l}}\right) ; \operatorname{Re}=\frac{D v_{\infty} \rho}{\mu} \\
& =c=\frac{4}{3} \times \frac{(980)\left(9.58 \times 10^{-3}\right)}{(1.59)(65)^{3}}\left(\frac{2.62-1.59}{1.59}\right) \\
& =1.86 \times 10^{.5} \Rightarrow \text { dimensionless }
\end{aligned}
$$

Find f from the $f v_{s} R_{e}$ curve for sphere which gives

$$
\frac{f}{\operatorname{Re}} \equiv \frac{1.86}{10^{5}} \Rightarrow 1.86 \times 10^{-5}
$$

draw a live of slope $=1$
from the poin $f \rightarrow 1.86$

$$
\operatorname{Re} \rightarrow 10^{5}
$$

Threamed conduetivity descrimes at what rate heat is conducted in a materiol

Founin's law of Hreat conduction

To maintain $\Delta T=T_{1}-T_{0}$
Cerfaim anurut of heat must be dupplied say (Q)

$$
\frac{Q}{A}=-k \frac{\Delta T}{y} \frac{\text { or in differential from }}{\substack{\text { Heat flow } \\ \text { Har }}}
$$

(t) ive quantity

For temperolure rasation in three dimentional. form.

$$
\begin{align*}
& q_{x}=-k_{x} \frac{\partial T}{\partial x} \tag{1}\\
& q_{y}=-k_{y} \frac{\partial T}{\partial y} \tag{2}\\
& q_{z}=-k_{z} \frac{\partial r}{\partial z} \tag{3}\\
& \bar{q}=\delta_{x} \cdot q_{x}+\delta_{y} \cdot q_{y}+\delta_{z} \cdot q_{z}
\end{align*}
$$

$$
\bar{q}=-K \nabla T
$$

Three dimrentional form of Founieris lavo.

It describes motecular tranzoot of heal ty in a isotropic unedia (k constants) k-may vary from $0.01 \frac{w}{m \cdot k}$ to $1000 \frac{w}{m \cdot k}$
(gases)
(Metab)
Prantline Number is the anoltes importans parameter in theat-tramsa
Prnumber for gases \rightarrow Cow $0 \cdot x$

$$
\begin{array}{r}
\text { liquids } \longrightarrow x \cdot 0 \text { to } \times \times \times \times .0 \\
\text { glyereof } 30^{\circ \circ} \mathrm{C}-6580 \\
350^{\circ} \mathrm{C}-329
\end{array}
$$

Enargy is a selar
$\mathrm{Pr} \rightarrow$ laquid metals - very low $\frac{0.00 \times x}{d_{1}}+0.0 .0 \times \times$
(See haquin matols haurdsork)

k of sotids \rightarrow wien tamp. k may be ${ }^{\text {bigh or }}$ bow
Es AL. 373.2 $\rightarrow 205.9$

$$
\text { Cd } \begin{aligned}
& 573.2 \longrightarrow 268 \quad 873.2 \rightarrow 423 \\
& 273.2 \longrightarrow 93.0 \\
& 373.2 \longrightarrow 90.4
\end{aligned}
$$

wood

$$
\text { panallel tooxis } \rightarrow \quad 0.126 \mid \text { anisotropic }
$$

$$
\text { Normal tuats } \rightarrow 0.03 B
$$

Temperature epressure dependiace of Thernal conductinsty:-
X Jou wayes refer. bo the monogeph ${ }^{m}$ fig $9.2-1$
 Chapman enslog formela for k of a monoatomic
$k \rightarrow \frac{\text { Cal.s. }}{\text { an.s. }}$
$T \rightarrow k_{0}$ collision
$\sigma \rightarrow \mathbb{A}^{0}$ (collision $\begin{aligned} & \text { diameter }\end{aligned}$
$\Omega_{k} \rightarrow$ whlision giniegrel ther Lennard-Jones mad potention taluty Table E. 2
for polyatomie gas at low density

Formix, of gai of lowdensity

$$
k_{\text {mix }}=\sum_{\alpha=1}^{N} \frac{x_{\alpha} k_{\alpha}}{\sum_{p} x_{\beta} \phi_{\alpha \beta}}
$$

$x_{\alpha} \rightarrow$ whte fraction $k x \rightarrow$ Thr cond of puse gas
$\phi_{\alpha \beta} \rightarrow$ constont
Q.9.3-1

Comperke the therwal condexcturity of a monoatanic ge of low Lansigy
For $\mathrm{Ne} \rightarrow$ Paraneter (Leonand-jinhes) Table E. 1

$$
\begin{aligned}
& \sigma=2.789 \mathrm{~A}, \quad G k=35.7 \mathrm{~K}, \quad M=20.183 \\
& \text { (} \left.\epsilon=\begin{array}{c}
\text { chavacteristic } \\
\text { entersy }
\end{array}\right) \\
& \text { yourt urt. }
\end{aligned}
$$

\therefore at 37?k

$$
k T / \varepsilon=\frac{373.2}{35.7}=10.45
$$

from toble E. 2

$$
\begin{aligned}
& \text { E. } 2 \quad \Omega_{k}=\Omega_{\mu}=0.821, ~\left(\frac{\pi M)}{\sigma^{2} \Omega k}\right. \\
& k
\end{aligned}
$$

Now
9.3.2

Estmake the thermal cordectinvity of unteentan oxygrea of 350 k ans low pressuse
(Th. conduetinity of Polyatornic gas as low density)

$$
\text { Mrr.wr. or } O_{2}=32.0 \quad \tilde{C}_{P, 300 k}=7.019 \frac{\mathrm{col}}{\mathrm{~g} \cdot \mathrm{wn}_{-k} \mathrm{~K}}
$$

From Table E. 1 teonard fones paranater for unlreular oxygien to be

$$
\sigma=3.433 A^{\circ} \text { an } \quad \in k=113 k
$$

At 3rk then $k \Gamma / E=\frac{300}{113}=2.655$ Toble E. $2 \Omega_{\mu}=1.074$ Thenistiong

$$
\begin{aligned}
\text { from } \begin{aligned}
& \text { eq. } 1.4 .18 \\
\mu= & 2.6693 \times 10^{-5} \frac{(M 1)}{\sigma^{2} \Omega_{\mu}} \\
= & 2.6693 \times 10^{-5} \frac{32.00 \times 300}{(3.433)^{2}(1574)} \\
= & 2.065 \times 10^{-4} \text { geur.s }
\end{aligned}
\end{aligned}
$$

from zucken

$$
\begin{aligned}
l_{e} & =\left(\tilde{c}_{p}+\frac{5}{4} R\right)(\mu / \mathrm{M}) \\
& =(7.079+2.484)\left(2.065 \times 10^{-4}\right) / 32.00 \\
& =6.14 \times 10^{-5} \frac{\operatorname{Col}}{\text { chas } k}
\end{aligned}
$$

(89)

$$
9,7-3 \text { do four } 2.1 \text {. }
$$

* Themor conduetiviry of lavials
$k=2.80\left(\frac{N}{\tilde{v}}\right)^{\text {/h }} K v_{s}$ (urdifed Brideg mavis formula

$$
\left(\frac{\tilde{v}}{\tilde{N}}\right) \rightarrow \frac{\text { volume }}{\text { wotecnte }}
$$

moditichen $3 \longrightarrow 2.80$ eq" appliubste A low teusities well obe above critied density
(b) Sonic Velociry $\rightarrow v_{s}$
$\frac{\stackrel{V}{N}}{N} \rightarrow$ volume / uofecule
$\mathrm{K} \rightarrow \mathrm{BOIt}_{3}$ man Nouttan-
The velocity of how

$$
\begin{aligned}
& \text { town } \\
& \text { ound } \\
& v_{s} \\
& c_{v}\left(\frac{\partial}{\partial P}\right)
\end{aligned}
$$

$\left(\frac{\partial P}{\partial \rho}\right)_{T} \rightarrow$ way be obfined fromeah I) stleatle
$\left(\frac{C_{P}}{C_{V}}\right) \longrightarrow 1$ forlanids except nean critical

* Prefiction on the thamal conduesvity of a hanid
a.प.1 The densily of liquid celc at $20^{\circ} \mathrm{C}$ and 1 ahmis 1.595 Htam 3 and its issthermal compresisinility, $\frac{1}{\rho}\left(\frac{\partial P}{\partial P}\right)_{T}=90.7 \times 10^{-6} \mathrm{athin}^{-1}$
What is the thermal condictista. What is the thernal condictivity: $\left.\frac{\partial P}{}\right)_{T}$
sinn

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial \rho}\right)_{T}=\frac{1}{\rho\left(\frac{1}{\rho}\right)\left(\frac{\partial P}{\partial P}\right)_{T}}=\frac{1}{1.595 \times 90.7 \times 10^{-6}}=\frac{6.91 \times 10^{3}}{\frac{\mathrm{an} 7^{2}}{g}} \mathrm{cmi} \\
& 6.91 \times 10^{23} \times 1.0133 \times 10^{6} \frac{\mathrm{~g}}{\mathrm{c}_{16, \mathrm{~s}^{2}}} \cdot \frac{\mathrm{~cm}^{2}}{\mathrm{~g}}=7.00 \times 10^{9} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Arsuming $\frac{C_{S}}{C_{V}}=1.0($ tolloquich $) \rightarrow V_{S}=\sqrt{\frac{P}{L}\left(\frac{\partial P}{\partial P}\right)_{T}}=8.37 \times 10^{4} \frac{\mathrm{~cm}}{5}$ molar volume $\tilde{v}=\frac{m}{\rho}=\frac{153.84}{1.595}=96.5 \frac{\mathrm{man}}{\mathrm{g} \text { wole }}$

$$
\begin{align*}
& \text { fromk }=2.80\left(\frac{\tilde{N}}{V}\right)^{2 / 3} K \bar{v}_{s}=2.80\left(\frac{6.023 \times 10^{23}}{8.37 \times 10^{21}}\right)^{2 / 3}\left(1.3815 \times 10^{-16}\right) \tag{a0}\\
&=1.10 \times 10^{4}\left(\mathrm{~cm}^{-2} /\left(\frac{e r v 5}{k}\right)\left(8.37 \times 10^{4}\right)\right. \\
&\left.(0 \mathrm{mals})^{4}\right)
\end{align*}
$$

Themal conduciring of sultids:
Th.c. $($ (h) k) S Shatat be areasured experimatally as they depferes on many freros (porosity mientilio, fhand containe in the porel)

Pure metals seties heat conduetors than nonmatals Crystallin. metab condects beat wore readly than amophoues moterich. pry porous poor beot conduetson.

reln with etecesied thermal conductring forpure metal.

$$
\frac{k}{k e T}=L
$$

(Lorenjean)
ke \rightarrow-electicel Th. C.
$L \rightarrow$ Core 3 Number

$$
\begin{aligned}
& \text { Core3 pumber } \\
& \approx 22-29 \times 10^{-9} \frac{\mathrm{vit}^{2}}{\mathrm{k}^{2}} \\
& \text { tor } \\
& \text { pute wetchar } 0^{\circ} \mathrm{C}
\end{aligned}
$$

"L" incieses Gy 10 - 20y, PO/000 R Typicdly.
"At rexy. loo trent wotan becompe sippe condutor.
ofelectricity hence Lvaries ropodly in the at lor temp. legion. (Supernordula, regory.
(91)

Assignmenth gAT 9A K
Sffectire Thermal conductuly of sols?
Solids vilk pores or solid diperkedin onother lolid (ruo ptase sold).

It cam be treated as a homogenvous moteriol othermal conductining (Keffl)
\& convecture Trompon of Energy:
Traunpost due to bure anotion os gawo acrossthe surface element ds 1 to the x axi is is

Note $\frac{1}{2} \rho v^{2}=\frac{1}{2} \rho\left(v_{\underline{x}}{ }^{2}+v_{\underline{y}}{ }^{2}+v_{z}^{2}\right)$ vr..

$$
\begin{aligned}
& \text { conve.ehre }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{\rho} v^{2}+\rho \hat{u}\right)^{+\left(1 / \rho \rho u^{2}+\rho \hat{u}\right) \delta_{r} v_{3}=}
\end{aligned}
$$

atis cullied conretimanss thaveator it is athes from () we side to (d) ive Fode
wone Associotred welh, Moleculan mution:

$$
\pi_{x}, \pi_{y}, \pi_{z} \rightarrow \text { stress vector }
$$

Asthe fhitith uring wihn velocity V
θ ive
on (A) flund is
note. The thad on the
rake of worn cone by fhin Note. The thid on the a ninus side of the hurtare epents an $\pi_{x} d s$ on

$$
\left(\pi_{x} \cdot v\right) d s
$$

ein the componert from
$\left(\pi_{x} \cdot v\right)=n_{x}$

$$
\begin{aligned}
& \left(\pi_{x} \cdot v\right)=\pi_{x x} v_{x}+\pi_{x y} v_{y}+\pi_{k z} y_{z}=1 \\
& \left(\pi_{y} \cdot v\right)=\pi_{y x} V_{x}+\pi_{y y} \cdot \forall_{y}+\pi_{y z} V_{1}=(\pi \cdot v)_{y}
\end{aligned}
$$

$\pi \rightarrow$ Molecular swess Tensor

$$
\begin{aligned}
& \text { Mriecular swess Tensor } \\
& \pi=P \delta+\tau \\
& \text { So that } \quad[\pi \cdot v]=\frac{\text { wher }}{\pi+1}\left(\pi_{x} \cdot v\right)+\delta_{y}\left(\pi_{y} \cdot v\right)+\delta_{z}\left(\pi_{z} \cdot v\right) \\
& \hline v+[\tau \cdot v]
\end{aligned}
$$

$$
\pi=p \delta+\tau
$$

The term pr can then be combined wieh the internal evreagy term $\rho \cup U$ to give an entholpy Ferm

$$
\rho \hat{u} v+p v=\frac{\rho(\hat{u}+P / \rho)}{\hat{u} u}
$$

$$
=\beta \rho(\hat{v}+p \hat{v}) v=\rho \hat{H} v .
$$

mateculan bear flero varon
coribrwed everary flus verpor.

tevt by ensitholsy/wan af the refeserce state.

$$
\begin{aligned}
\text { integral overp } & =0 \text { (bor ithe }{ }^{\text {an }} \text { gas) } \\
& \left.=1 \text { (} p^{\circ}\right) \text { for thichs }
\end{aligned}
$$

$=1 / p\left(P-P^{0}\right)$ for thions of const ρ
(91.6

The integral ave T becomes
$c_{p}\left(T-T^{0}\right)$ is the bed capacity can be segared as contr. over the beteroust tans range. Assigmenerit 9A.! MA.? TA.B. DA in TA. $1, \quad$ AA. $8, \quad 9 A \cdot 10$

Chapfer 10 Bind.
Shell Enegry Bolane a tiemp destrisation in Borids and Lammar flow.

General Equegy Bedaver eqh of SS.

Tuisis a I law of themo writen for open symiour.
Above equ generotres a FioDI for this blab to be solved wur suitabtie $I C$, commorm B.C
(1) Spenty the surpale temp.
(2) heat flus normol to a lufpace nay be given (as good os spentying lw nownd corp of the tents. gratimens.
(3) Ters contring contonity at the Duface T emp 8 heak Sufac
(4) on solid the $\left(T_{0}-T_{b}\right)$ ventmalaw of coolvg

Heas condenction with an rlectred Drurce:

Uniformbeat production by electricaboling Se.
wire of Radius h and electrical. condrutavity ke $\mathrm{Jhm}^{-1} \mathrm{am}^{-1}$
heal Source
Assuring tuar the temp nise is vit so laige the k 大ke $\neq f(T)$
The sufare of the wite is mantavied of To Q2 Fwo the rodiol temp derributi-
forenergy belquce comsedter a rhell og thicioves ar. and loug $h_{h} L_{1}$

$$
\begin{aligned}
& \text { Sincue } N=0 \text {. }
\end{aligned}
$$

$q \rightarrow$ heat flus nultecorlan

$$
\left(q_{r}-q_{r+\Delta r}\right) 2 \operatorname{rrL}: \Delta r \rightarrow \text { very smal }
$$

\&
liatie of heot moduction $=(2 \pi r \Delta x L$). Se.
combins

$$
\begin{aligned}
& \left(r q_{r}-r q_{r+o r}\right) 2 \pi r L+2 \pi r \text { ar } 1 \text {. Se 2o } \\
& -\frac{d(q r)}{d r}+\operatorname{ser}=0 \\
& \frac{d(q r)}{d r}=\operatorname{sen} \quad o r \\
& q r=\frac{\operatorname{ser}}{}{ }^{2}+C_{1} \\
& q=\frac{\operatorname{ser} r}{2}+\frac{c_{1}}{2} .
\end{aligned}
$$

our $r=0, \quad q$ is fintue: $c_{1}=0$

$$
\begin{aligned}
& \quad q_{r}\left(\frac{f e r}{2}\right) \quad q r=-k \frac{d T}{d r} \\
& \therefore-k \frac{d T}{d r}=\frac{\text { se } r}{2} \\
& \therefore \quad T-T_{0}=\frac{S_{e} R 2}{4 k}\left(1-\left(\frac{r}{R}\right)^{2}\right.
\end{aligned}
$$

It is a parabilse the.
(95)
(i) Mast temprre

$$
T_{\text {max }}-T_{0}=\frac{S_{e} R^{2}}{4 k}
$$

(ii) Avg tem rise

$$
\langle T\rangle-T_{0}=\frac{\int_{0}^{2 \pi} \int_{0}^{R} R\left(I r r t-T_{0}\right) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta}=\frac{S_{e} R^{2}}{8 k}
$$

$$
=K T_{\text {max }}
$$

(iii) Heal oulflow an the sinface (forosteygh of wive)

$$
\begin{aligned}
\left.Q\right|_{r=R} & =2 \pi R L \cdot q_{v 2 R} \\
& =2 \pi R L \cdot \frac{\operatorname{seR}}{2}=s_{e} \cdot \underline{\pi R^{2} L}
\end{aligned}
$$

clearly heat imput. heot output ofr S.S Companinon with momenturn tramport

Geankoplial 217 4.10-Chcek
Theormal Condecemity pgos.
$k \propto(\sqrt{T}) \quad$ (Chopmon reqn)
$K \neq L(P)$ but onveng low pressume $k \rightarrow 0$
Th. ciond. of liquid. refer (Recol etap. 1972) Enengy is tranferred due to nop whllisin.
Reerg ef-d, \rightarrow mopporties of gases and haurds pranysitis

$$
k=a+b T \quad k \neq f(P)
$$

Kwotes $>$ Korgavicladu.
Th. cond of solid. varnes quitre widnely wetal have very high Th.C.
wood, noce epe bave vey low th. e. I wo mehomisus of H.T in sold
(1) Neatis condacsed by tree elechon (2) Heat is condethed by trampariond evergy.

Assignment (10.9.1 emanp le. 10.2 .2

Heat corduistion with a Nuetrear heeat Dource: covlam

Snu \rightarrow vilume rate of beat production at the cantre of the sphene, and b is a dinneursontian θ iv. constans.

- No flow henee $=(e=q$
racte or consldien a opphrene of thickenen $\underset{\sim}{\sim}$.
fleat Heat in $\quad q_{r} l_{r}, 4 \pi r^{2}$,
rake on heal $\left.\left.q_{r}^{R}\right|_{r+\Delta r} 4 \pi(r+r r)^{2} \simeq 4 \pi^{2} q_{r}^{(F)}\right|_{r+\Delta r}$
Oul

Rale of thernal enengy produced

$$
s_{n}+4 \pi r^{2} \text { or }
$$

by nuctean firsson
making a belainec

$$
\frac{d}{d r}\left(r^{2} q_{r}^{(\infty)}\right)=\operatorname{mr} r^{2} \Delta r \rightarrow 0
$$

(97)
2.5

$$
\frac{d}{d r}\left(r^{2} q_{r}^{(r)}\right)=\sin \left(14 b\left(\frac{r}{p^{(r)}}\right)^{2}\right] r^{2}
$$

for cladding

$$
\frac{d}{d r}\left(r^{2} q_{r}^{(c)}\right)=0
$$

on integralion
B.C.S

$$
\begin{aligned}
& q_{r}^{(f)}=\sin \left[\frac{r}{3}+\frac{b}{R^{(r)}}: \frac{r^{3}}{5}\right]+\frac{C^{(r)}}{r^{2}}
\end{aligned}
$$

as

$$
q_{r}^{(F)}=\sin 0\left(\frac{r}{3}+\frac{b}{R^{(F / 2}} \cdot \frac{r^{3}}{5}\right)
$$

contimuity of flusis
hubstontme fomives lave to fiv lenp desrrisation

$$
\begin{aligned}
\quad(F) \frac{d i(k)}{d r} & =\sin \left(\frac{r}{3}+\frac{b}{R^{(f)} 5^{r}} \frac{r 3}{5}\right) \\
-k^{c} \frac{d i(r)}{d r} & =\sin \left(\frac{1}{3}+\frac{b}{5}\right) \frac{R^{(k)^{3}}}{r^{2}}
\end{aligned}
$$

(98)

$$
\begin{aligned}
& \pi^{(f)}=-\frac{\sin 0}{k^{(F)}}\left(\frac{r^{2}}{6}+\frac{b}{R^{(r)^{2}} \cdot \frac{r 4}{20}}\right)+c_{3}^{(f)} \\
& T^{(c)}=\frac{\sin 0}{k^{(c)}}\left(\frac{1}{3}+\frac{b}{5}\right) \frac{R^{(f) 3}}{r}+c_{3}^{(c)}
\end{aligned}
$$

R.C.S

$$
\begin{array}{rlr}
\text { af } r & =R^{(F)} & T^{(F)}= \\
r & =R^{(C)} & T^{(C)}=
\end{array}
$$

contimuity of temp
where T_{0} is the known temperdina at the ousside of the clabding

$$
\begin{aligned}
T^{(R)}= & \left.\frac{\sin R^{(f)^{2}}}{6 k^{(f)}}\left[1-\left(\frac{r}{R^{(F)}}\right)^{2}\right]+\frac{3}{10} b\left(1-\left(\frac{r}{R^{*}}\right)^{4}\right]\right\} \\
& +\frac{\sin 0 R^{(F)^{2}}}{3 k^{(c)}}\left(1+\frac{3}{5} b\right)\left(1-\frac{R^{(\sigma)}}{R^{(C)}}\right) \\
T^{(C)}= & \frac{\sin R^{(f)}}{3 k^{(F)}}\left(1+\frac{3}{5} b\right)\left(\frac{R^{(F)}}{r}-\frac{R^{(F)}}{R^{(C)}}\right)
\end{aligned}
$$

Heat conduction with a visons theof Dounce; Flow of in coxpressible Newt anion flud Gwhiso

Considien the volume heat fource due to visuous dirsicpalion is $S v \rightarrow$ wot external corridier $b \ll R$ then $v_{z}=v_{b}\left(\frac{x}{b}\right)$ where

$$
v_{b}=\Omega R
$$

conodier a shell of thriciones Δx, wioth. W \& leng itr L
Energy balace intur x direation,

$$
\begin{aligned}
& \text { w. L.ex }\left.\right|_{x}-\left.w \cdot L \cdot e_{x}\right|_{x+\Delta x}=0 \\
& \frac{d e_{x}}{d x}=0 \quad 0 \quad x \text { compononvedivion } \\
& \text { tainporn te } \\
& e_{x}=\left(\frac{1}{2}+v^{2}+(H) \cdot v_{x}+\frac{(t, v)_{x}+}{q_{0}}=\right. \\
& \begin{aligned}
+7 y_{y} \\
+r y^{2} \\
2
\end{aligned}
\end{aligned}
$$

firstitermis gero as the re is no flow ${ }^{n}+x^{x} z^{2} z$ radial direction

$$
\begin{aligned}
& \because v_{x}=v_{y}=0 \\
& \begin{aligned}
\text { Txy } & v_{x}=V_{x y} v_{y} \\
& =0
\end{aligned} \\
& =0 \\
& \operatorname{onl}^{1} \cos _{x}, v_{z} \\
& \text { (60 (7) }
\end{aligned}
$$

$$
e_{x}=c_{1}
$$

we can wring

$$
\begin{aligned}
& \quad(c \cdot v) \cdot+v_{k}=c_{1} \\
& -\mu \cdot \frac{d v_{z}}{d x} \cdot v_{z}+\left(-k \frac{d T}{d x}\right)=c_{1} \\
& -\mu v_{3} \frac{d v_{z}}{d x}-k \frac{d T}{d x}=c_{1} \\
& -\mu v_{b}\left(\frac{x}{b}\right) \cdot\left(\frac{v_{b}}{b}\right)-k \frac{d T}{d x}=c_{1} \\
& -k \frac{d T}{d x}-\mu x \cdot\left(\frac{v_{b}}{b}\right)^{2}=c_{1} \\
& \frac{d T}{d x}=-\frac{\mu x}{k}\left(\frac{v_{b}}{b}\right)^{2}-\frac{c_{1}}{k} \\
& T=-\frac{\mu}{k}\left(\frac{v_{b}}{b}\right)^{2} \cdot \frac{v^{2}}{2}-\frac{c_{1} x}{k}+c_{2}
\end{aligned}
$$

B.C. at $x=T=T_{0}$,

$$
\text { at } x=b T=T_{b}
$$

$$
\frac{T-T_{0}}{T_{b}-T_{0}}=\frac{1}{2}\left(\frac{a_{b} v_{b}^{2}}{k\left(T_{0}-T_{0}\right)}+\frac{x}{b}\left(1-\frac{x}{b}\right)+\frac{x}{b}\right.
$$

$\mathrm{Br} \Longleftrightarrow$ Brinlaman number. for $\mathrm{Br}>2$ the mare Temp. willocure al the lubricant rather than of any oo the surface high temp.
(101) viscurs neating (SV)
$=$ heat addetion dame to viscosity

$$
\begin{aligned}
& \left.=\left(-V_{r} z \cdot w \cdot L\right) \cdot V_{b} \quad\right\} \longrightarrow \text { rake of wonc tane } \\
& \frac{\text { Iforce }}{\text { dinplacemans }} \\
& \text { time }
\end{aligned}
$$

There foro rote of enagy addation/vilume

$$
\begin{array}{r}
=-\frac{c_{n z} w L \cdot V_{b}}{w \cdot L \cdot b}=\mu \cdot \frac{w^{\prime} L v_{b}}{w L b} \cdot\left(\frac{d v_{z}}{d w}\right) \\
=\mu\left(\frac{v_{b}}{b}\right)^{2} \quad \begin{array}{r}
\text { since } \quad v_{z}=\left(\frac{v_{b}}{b}\right) x \\
\frac{d v_{z}}{d x}=\frac{v_{b}}{b}
\end{array}
\end{array}
$$

$$
s_{v}=\mu\left(\frac{v_{b}}{b}\right)^{2}
$$

(Sunando - Lect. 35 NPTRL)
Temp them any of the Surface

Heat conduretion with a Chernical Source

fixed beet and-flow reacfor. Reactants entles at $z=-\infty$ and leave al $z=-\infty$. The reaction zone extenss from $z=0$ to $z=L$
consider that gland is flowing en a "plug. finn" through the reactor with uniform ankal velocity

$$
v_{0}=\frac{w}{\pi R^{2} \rho}: \quad w=A u \rho
$$

Superficial velocity
A is $x^{\text {nad }}$ area.
note that

* $\rho, g v_{0}$ and $v_{0} \neq f(r)$

$$
\neq f(z)
$$

(*) Reverter wall is insulated, so $T \neq f(r)$ but

$$
T=f(z)
$$

If is desired to fin the temperature distribution is the z-direction when the fund enters at $z=-\infty$ with a Uniform temp.enature T_{1}.
Consider $S C$ be the volume rake of heat gen generation due to chemical resection.
usably $S c=f(P, T, C)$ but for Simplicity let $S_{C}=S_{1} F(\theta)$ where $\theta=\frac{T-T_{0}}{T_{1}-T_{0}}$
Here e T is the local temp and in the coldest bed and $\$ C$, \& T_{0} are empirical const.
for the gives rector condition.
consictes a strip of Δz thiereness

$$
\left.\pi R^{2} e z\right|_{z}-\left.\pi R^{2} e_{z}\right|_{z+\Delta z}+\lambda R^{2} \Delta z \cdot s_{c}=0
$$

$$
\begin{aligned}
& \frac{d e_{z}}{d z}=S c \\
& \sim\left(\sim^{\sim v o m}\right) \\
& \frac{d}{d z}\left(\left(\varepsilon_{2} \rho_{z} v^{2}+\rho \hat{H}\right) v_{z}+\tau_{z z} \cdot v_{z}+q_{z}\right)=S c \\
& \left.-k \text { ops }, z z \cdot \frac{d i}{d z}\right)=s_{c}
\end{aligned}
$$

As
$v_{z} \neq f(z)$ also pressure gradient-con be neglected
Hence the eq. Colure reduced to
$\therefore \rho \hat{c p}\left(T-T_{0}\right) v_{z}=k_{e p h, z} \frac{d T}{d z}+S_{c} \quad$ for Zorn is
Equations for Three zones can be mitten as forlours.
Zone $1 \quad(z<0) \rho \hat{p_{p}} v_{0} \frac{d T^{I}}{d z}=$ Keff,zz$\frac{d^{2} T^{I}}{d z^{2}}$
zone II $\left(o(z<L) \quad \rho \hat{c} p V_{0} \frac{d T I I}{d z}=k_{k p, z z} \frac{d^{2} T^{I I}}{d z^{2}}+S C_{1} F(\theta)\right.$
Zone III $(z>L) \quad \rho \hat{\varphi} V_{0} \frac{d T \frac{\text { III }}{d z}=\operatorname{ken}, ~ z z \frac{d^{2} T \text { III }}{d z^{2}} 4 .}{}$
Assumption: Same keff $z z$ for three zones
Boundary condition's for solving above BC's
(1) air $z=-\infty \quad T^{I}=T_{1}$
(2) at $z=0 \quad T^{I}=T^{I I}$
(3) or $z=D \quad$ Kep. $z z \frac{d T^{I}}{d z}=$ Kens. $z 7 \frac{d T^{I I}}{d z}$
(4) ar $z=L \quad T^{I I}=T^{\text {III }}$
(5) at $z=L, \quad \operatorname{kefi.zz} \frac{d T}{} \frac{d I}{d z}=\operatorname{keps}, z z \frac{d T}{d I}$
(6) at $z=\infty \quad T^{\text {III }}=$ finite.

In. many cases of Practical interest connective heat transport is more inportans compared to conderetive heat tram sport hence condrehice tens could be neglected. This may be the case paticulouly for large Pectic number. ($\mathrm{Pe}=$ Re. Pr) it. at high Regarded number ensuny phis flow behantor.
consider $z=\frac{Z}{L}$ \&
dinnevionles head source

$$
N=\frac{S C_{1} \cdot L}{\rho \hat{C_{p}} v_{0}\left(T_{1}-T_{0}\right)}
$$

(104)

Equation for zones then resuces to

$$
\begin{aligned}
& \text { Zone } 1 \\
& (z<0) \quad \frac{d \theta^{1}}{d z}=0 \left\lvert\, \begin{array}{c}
\text { As } \rho\left(v_{p} v_{0} \frac{d T^{T}}{d z}=0\right. \\
\left(T_{1}-T_{0}\right) \frac{d\left(T^{I}-T_{0}\right)}{\left(T_{1}-T_{0}\right)} \\
\text { or } \frac{d\left(\theta_{L}\right)}{d z}=0
\end{array}=0\right.
\end{aligned}
$$

zone-I

$$
0<z<L \quad \frac{d \theta^{I}}{d z}=N F(\theta)
$$

Zone III

$$
\frac{\text { III }}{z>L} \quad \frac{d \theta}{d z}=0
$$

we veed three B.C.' to solve above eqns

$$
\begin{array}{ll}
z=-\infty & \theta^{I}=1 \\
z=0 & \theta^{I}=\theta^{I I} \\
z=1 & \theta^{I I}=\theta^{I I}
\end{array}
$$

suth

$$
\begin{array}{lr}
\theta^{I}=1 & \text { zone-1 } \\
\int_{\theta^{I}}^{\theta^{I}} \frac{1}{f(\theta)}=N z & \text { rone-II } \\
\theta^{\text {III }}=\left.\theta^{\text {II }}\right|_{z=1} & \text { zone-III }
\end{array}
$$

105
As an approximation

$$
f(\theta)=\theta
$$

For small changes in tempenatine if the reaction rate is insensititive to concent ration.

Thus we have

$$
\begin{array}{rr}
\theta^{I}=1 & \text { Zone.I } \\
\theta^{I I}=e^{N Z} & \text { Zone- I } \\
\theta^{I I}=\left.\theta^{I I}\right|_{z=1}=e^{N(1)}=e^{N} \\
\therefore \theta^{\text {III }}=e^{N} \quad \text { zone III }
\end{array}
$$

pretinte
protecting or presorting

$$
z=\frac{z}{L}
$$

these in this section axial conduction has been discard ted (in 10B.18. Bird it in not discarded). However in actual case when asicel conduction is not diseased then beth zone I \& II at junction there may be pres - heating (exothermic $\times n$) or precooking (endothemmicrm) may occune opposit to the convective heat flow (Sunando Lect. 34 NPTEL)

Heal conduction wis a corling fir werll find cooling finceficieny

Tw
A Sinper coolvytio wits

BLLE, and

$$
B<\angle W
$$

1. $T=f(x, y, z)$ warci- amperals
2. heat-is alro lost from $2 B \omega$
3. $h=f$ (prsition)
$T a \rightarrow$ armbent toup.
model

$$
T=f(z)
$$

No beat loss fromita edyes

$$
q_{z}=\frac{h}{c}\left(T-T_{a}\right)
$$

constants 8 $r=f(z)$

Enexgy bolance.

$$
\begin{aligned}
& \text { nexgy bolance. } \\
& 2 B w q_{z} / z-2 \beta w q_{z} /_{z+\Delta z}-k(2 w \Delta z)\left(T-T_{a}\right)=0 \\
& \text { an tatein the hinit as }
\end{aligned}
$$

pivision by $2 B W \triangle z$ and tateing the hmir as Δt approvehes jew gives

$$
-\frac{d q_{3}}{d t}=\frac{h}{B}(T-T a)
$$

$$
\begin{aligned}
& -\left(q_{z}=-\frac{k d r}{d 3}\right) \text { in which } k \text { is the themet } \\
& \text { conswetwinty of the enetal. }
\end{aligned}
$$

$$
\frac{d^{2} T}{d 3^{n}}=\frac{h}{k B}(T-T)
$$

B.C.I at $Z=0, \quad T=T 0^{*}$

$$
\text { B.C. } 2 \text { at } 3=L \quad \frac{d r}{d z}=0
$$

Hhetal $\theta=\frac{T-T_{a}}{T_{w}-T_{a}}$
(Leta) $\angle \zeta=\frac{z}{L}$
$N^{2}=\frac{h L^{2}}{l B}$ dementrosters HiPC.
$\frac{d^{2} \theta}{d \zeta^{2}}=\lambda^{2} \theta$ with $\theta / 3=0=1$ ard
$=0$

$$
\left.\frac{d \theta}{d \zeta}\right|_{z=1}=0
$$

The quanitity x^{2} maybe $N^{2}=\left(\frac{h}{k}\right) \cdot\left(\frac{R}{B}\right)$

$$
=B i\left(\frac{l}{3}\right)
$$

SOVh

$$
\begin{aligned}
& \theta=\cos N 3-(\tan h N) \sin N \\
& \theta=\frac{\cosh N(1-\xi)}{\cosh N} \\
& \eta=\frac{\text { actual rase of heat boes from the fin }}{\text { rate of heot loss froman isthernd fom }}
\end{aligned}
$$

(08)

$$
\begin{aligned}
\eta & =\frac{\int_{0}^{w} \int_{0}^{L} h\left(T-T_{a}\right) d \xi d y}{\int_{0}^{w} \int_{0}^{L} h\left(T_{w}-T_{a}\right) d \xi d y} \\
& =\frac{\int_{0}^{1} \theta d \zeta}{\int_{0}^{1} d \xi} \\
\eta & =\frac{1}{\cosh N}\left(-\left.\frac{1}{N} \operatorname{sinhN}(r \xi)\right|_{0} ^{\prime}\right. \\
& =\frac{\tan h \omega}{N}
\end{aligned}
$$

in which $N \rightarrow$ dimensiondes quoublity

Foreed Convection.
consiter forced convection in a eirculan tube

As the enengy in being tramported in the * and r dinection corsidei a ring of fhid. elennent of theionen or \& langr Δz.
(*) refer to shelt 110
Evreigy bolarie:
Total evergy ein of $r=\left.e_{r}\right|_{r} \cdot 2 r r \cdot \Delta z$

$$
\begin{aligned}
\text { in of } r & =\left.e_{r}\right|_{r} \cdot 2 \pi \\
\text { o,t at } r+\Delta r & =\left.e_{r}\right|_{r+\Delta r} \cdot 2 \sim(r+\Delta r) \cdot \Delta z \\
& =2 \pi r \Delta z \cdot e_{r r \Delta r}
\end{aligned}
$$

Total eneyg in art $=e_{z} \|_{z} \cdot 2 \pi r \cdot \Delta r$

$$
\text { ous at zarz }=\left.e_{z}\right|_{z+\Delta x} \cdot 2 \operatorname{rr\cdot or}
$$

wore done on theid by granity $=\frac{\rho \cdot g \cdot 2 \text { Nr. } \Delta r \cdot \Delta z \cdot v_{z}}{d \text { force } \cdot \frac{\mathrm{m}}{\mathrm{se}}}$

$$
=\operatorname{sen} / \mathrm{s} .
$$

In firced carwee tion probsterm vecouthy prip. Wre is andy ound first and then-te a wed to

* Here fully developed

$$
\begin{aligned}
\therefore \quad v_{z} & =\left(\frac{\rho_{0}-\rho_{L}}{4 \mu L}\right] R^{2}\left[1-\left(\frac{r}{R}\right)^{2}\right] \\
& =v_{\text {maxas }}\left[1-\left(\frac{r}{R}\right)^{2}\right]
\end{aligned}
$$

Energy bolance

$$
\frac{\left.(r e r)\right|_{r}-\left.(r e r)\right|_{r+\Delta r}}{\Delta r}+r \cdot \frac{\left.e_{z}\right|_{z}-\left.e_{z}\right|_{z+\Delta z}}{\Delta z}+e_{v_{z}} g_{z}^{r}=0
$$

or as $\Delta r \rightarrow 0, \Delta z \rightarrow 0$

$$
\begin{aligned}
& -\frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot e_{r}\right)-\frac{\partial e_{z}}{\partial z}+e v_{z} g_{z}=0 \\
& e_{r}=q_{r}+\left(\frac{1}{\varepsilon}+v^{2}+\varphi H^{\hat{H}}\right) y_{r}^{0}+\left(\tau_{r y} \cdot \vec{v}_{r}^{0}+\tau_{r \theta} v_{0}^{0}+\tau_{r z_{z}} v^{0}\right) \\
& v_{z} \cdot \operatorname{Trz}=-\mu\left(\frac{\partial^{v} z}{\partial r}\right) \cdot v_{z} \\
& =-k \frac{\partial T}{\partial r}-\mu \frac{\partial v_{z}}{\partial r} \cdot v_{z} \\
& e_{z}=q_{z}+\left(\frac{1}{2} \rho v^{2}+\rho \hat{H}\right) v_{z}+\left(\tau_{z y} v_{v}+\tau_{z} \psi_{v_{\theta}}^{0}+\tau_{z \psi} \hat{v}_{z}^{0}\right) \\
& =-k \frac{\partial T}{\partial z}+\left(\sum \rho v^{2}+\rho \hat{n}\right) v_{z}
\end{aligned}
$$

\hat{H} caube letermined from law of thennodynomes

$$
\begin{aligned}
\hat{H} & =f(T, P) \\
d \hat{H} & =\left(\frac{\partial \hat{H}}{\partial T}\right)_{-P}^{d T}+\left(\frac{\partial \hat{H}}{\partial P}\right) d \hat{P}=\hat{C} \\
& =\hat{C P} d T+\left[T\left(\frac{\partial S}{\partial P}\right)_{T}+V\left(\frac{\partial P}{\partial P}\right)_{T}\right] d P
\end{aligned}
$$

Max mellen $\hat{H}=T d s+V d P$

$$
=\hat{C_{p}} d T+\left[T\left(-\frac{\partial \hat{V}}{\partial T}\right)_{p}+\hat{V}\right] d p
$$

Forgas considier isiects gas law froliows

$$
\begin{aligned}
& P V=R i \\
& \therefore\left(\frac{\partial V}{\partial T}\right)=\frac{R}{P} \Rightarrow \frac{R T}{P}=V
\end{aligned}
$$

$$
d \hat{n}=\hat{C_{p}} d T
$$

Fhidiconsian
For dod dewslty. Firt ter cos wiur remain

$$
\hat{H}-\hat{H}^{0}=\hat{C_{p}}\left(T-T^{0}\right)+\int_{P^{0}}^{0}\left[\hat{V}-T\left(\frac{\partial V}{\partial T}\right)_{p}\right] d p
$$

Fhud is imompressibste mears ρ is constiant

$$
\rho=\frac{1}{\hat{V}} \text { so } \hat{v}=\text { const }
$$

$$
\hat{H}-\hat{H}^{0}=\hat{C_{p}}\left(T-T^{0}\right)+\hat{\int_{P^{0}}^{p}}\left[\hat{V}-T\left(\frac{\partial \hat{V} p^{0}}{\partial)^{0}}\right)_{P}\right] d p
$$

$$
=\hat{C_{p}}\left(T-T^{0}\right)+\hat{V}\left(p-p^{0}\right)
$$

$$
\left.=\hat{c_{p}}\left(T-T^{0}\right)+\frac{\left(P-p^{0}\right.}{\rho}\right)
$$

Let $\hat{H}^{0} \Rightarrow 0$ for reference

$$
\left.\therefore \hat{H}=\hat{C_{p}}\left(T-T^{0}\right)+\frac{\left(P-p^{0}\right.}{\rho}\right)
$$

$$
e_{z}=-k \frac{\partial}{\partial r}+\left(V_{2} \rho v^{2}+\rho \hat{\rho}\left(T-T^{0}\right)+\left(p-p^{0}\right)\right) v_{z}
$$

substituning the terms in thee shell batance eqn.

$$
\begin{aligned}
& -\frac{1}{\gamma}\left(\frac{\partial}{\partial r}\left(r e_{r}\right)\right)-\frac{\partial e_{z}}{\partial z}+f v_{z} g_{z}=0 \\
& -\frac{1}{\partial} \frac{\partial}{\partial r}\left(r\left[-k \frac{\partial T}{\partial r}-\mu \frac{\partial V_{z}}{\partial r} \cdot V_{z}\right]\right) \\
& -\frac{\partial}{\partial z}\left[-k \frac{\partial r}{\partial z}+\frac{1}{2} \int v_{z}^{2} v_{z}+\rho c \hat{p}\left(\tau-T^{0}\right) v_{z}+\left(p-p^{0}\right) v_{z}\right] \\
& \binom{\text { conduction in } z}{\text { drection is } \rightarrow \text { mals }} \quad \stackrel{\text { voprn }}{\text { dingr }} \\
& +\rho v_{z} g_{z}=0 \\
& \text { thistem } \\
& \text { sew as fconst. \& } v_{z} \neq f(z) \quad \forall z \\
& \frac{1}{r} \frac{\partial}{\partial r}\left[k r \frac{\partial T}{\partial r}+\mu v_{z} \cdot r \frac{\partial v_{z}}{\partial r}\right]-\rho \hat{p} \frac{\partial T}{\partial z} \cdot v_{z}-v_{z} \frac{d p}{d z}+\rho v_{z} g_{z}=0 \\
& \frac{1}{r}\left[k r \frac{\partial^{2} T}{\partial r^{2}}+\mu v_{z} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\mu r \frac{\partial v_{z}}{\partial r} \cdot \frac{\partial v_{z}}{\partial r}\right]-\rho \hat{\rho} v_{z} \frac{\partial T}{\partial z}-v_{z} \frac{\partial p}{\partial z} \\
& +\rho v_{z} g_{z}=0 \\
& \text { Hence }
\end{aligned}
$$

$$
\begin{aligned}
& k \frac{\partial^{2} T}{\partial r^{2}}+\frac{k}{r} \frac{\partial T}{\partial r}+\mu \frac{v_{z}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\mu\left(\frac{\partial r}{\partial r}\right)^{2}-v_{z} \rho \hat{c_{p}} \frac{\partial T}{\partial z} \\
&-v_{z} \frac{\partial p}{\partial z}+\rho v_{z} \partial_{z}=0 \\
& k \frac{\partial^{2} r}{\partial r^{2}}+\frac{k}{r} \frac{\partial T}{\partial r}-v_{z} \rho \hat{\rho p} \frac{\partial T}{\partial z}+\left(\frac{\mu}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}-\frac{\partial \eta^{\prime}}{\partial z}+\rho g z\right) v_{z}\right)=0 \\
& z-\operatorname{comp} p \text { of relocity }
\end{aligned}
$$ in N-S eqn and will be $=0$ forthincase check N-S eqn.

$$
\begin{equation*}
\frac{K}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)=v_{z} \rho \hat{c_{p}} \frac{\partial T}{\partial z} \tag{1}
\end{equation*}
$$

Desired expression.
Now v_{z} is a for of r ar:

$$
V_{z}=V_{z \max }\left[1-\left(\frac{Y}{R}\right)^{2}\right]
$$

113
Thess

$$
\begin{equation*}
\rho\left(\hat{p} V_{\text {zinais }}\left[1-\left(\frac{\gamma}{R}\right)^{2}\right] \frac{\partial T}{\partial z}=\frac{k}{r}\left[\frac{\partial}{\partial r}\left(\gamma \cdot \frac{\partial T}{\partial r}\right)\right]\right. \tag{2}
\end{equation*}
$$

To solve this eqn an alternatemethod is given in Ariwant heat transfer pp-259

Boundary conditions
(1) at $r=0 ; \quad \frac{d r}{d r}=0$ symmetry $\forall z$

$$
T=\text { finite }
$$

(2) at $r=R \quad-K \frac{\partial T}{\partial r}=q_{0}$ uniform he athens at wall
\therefore continuity of heat flue.
(3) at $z=0 \quad T=T_{1} \quad \forall r$
sot of above $e \mathrm{~g}^{n}$ involves the use of timensionters parameters

The eqn then Becomes $\left(1-\xi^{2}\right) \frac{\partial \theta}{\partial \zeta}=\frac{1}{\xi} \frac{\partial}{\partial \xi}\left(\xi \frac{\partial \theta}{\partial \xi}\right)$ with B.C. ar $\xi=0 ; \vartheta=$ finite; of $\xi=1, \frac{\partial \theta}{\partial \xi}=1 ;$ al $\bar{\xi}=0, \theta=0$
An asymptotic solution for the above en could be obtained for large 3 . As for range 3 the temperaliux. pron-xe as a function of will not unadergofinther change with increasing ξ. Thus for large $\$$

$$
\begin{equation*}
(\xi, 3)=c_{0} \zeta+\psi(\xi) \tag{4}
\end{equation*}
$$

where coed a constant to be detennmed.
However this eq" does not sottiofy B.C. 3 but Sotaspies $B C \cdot L$ and $B \cdot C .2$. Thence $B C \cdot 3$ needs to be changed.

Figure: how the tempe ra pure would change when the tube wall is heating using a evil wrapped around the tube cns formally
B. C. 4 .

$$
\overline{2 \pi R Z q_{0}}=\int_{0}^{2 \pi} \int_{0}^{R} \rho \hat{\varphi}\left(T-T_{1}\right) \Psi_{2} r d r d \theta
$$

or indernennonlen form.

$$
\begin{equation*}
\zeta=\int_{0}^{1} \Theta(\xi, \xi)(1-\xi) \xi d \xi \tag{5}
\end{equation*}
$$

ie.
Energy Suppliealovera distance \bar{S} is the (energy learingat 5 evensyenten ry at $\xi=0$)
Substituting $\mathrm{eq}^{n}(4)$ in to eq n (3)

$$
\frac{1}{\xi} \frac{d}{d \xi}\left(\xi \frac{d \psi}{d \xi}\right)=c_{0}\left(1-\xi^{2}\right)
$$

which gives on twice integration.

$$
\begin{aligned}
\theta(\xi, \xi)= & c_{0} \xi+c_{0}\left(\frac{\xi^{2}}{4}-\frac{\xi^{4}}{16}\right) \\
& +c_{1} \ln \xi+c_{2}
\end{aligned}
$$

Using B.C.S (1), (2) and (4)
the constants are $C_{1}=0$ from B.C.I

$$
c_{0}=4 \text { ur } B \cdot C \cdot 2
$$

$c_{2}=-7 / 24 \quad$ from condition 4
Thus

$$
\theta=4 \zeta+z^{2}-\frac{1}{4} \xi^{4}-7 / 24
$$

valid for longe Z; $\Sigma \rightarrow \infty$
Frith mastic arg temp.

$$
\langle T\rangle=\frac{\int_{0}^{2 \pi} \int_{0}^{R} T(r, z) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta}=T_{1}+\left(4 \xi+\frac{7}{24}\right) \frac{q_{0} R}{k}
$$

Bulk arg temp

$$
\begin{aligned}
& \text { bulk arg. temp } \\
& \text { mining cor temp. } T_{b}=\frac{\left\langle v_{z} \tau\right\rangle}{\left\langle v_{z}\right\rangle}=\frac{\left.\int_{0}^{2 \pi} \int_{0}^{R} v_{z}(r) T \mid r, z\right) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{R} v_{z}(r) r d r d \theta} \text {.r }
\end{aligned}
$$

(115)

$$
T_{b}=T_{1}+4 \zeta \frac{q_{0} R}{k}
$$

Local Heal Transfer Driving force, Tu -Tb

$$
\begin{aligned}
& \text { (a) } r=R_{1}, T=T w \\
& \therefore \frac{T-T_{1}}{\frac{q_{0} R}{K}}=45+\left(\frac{r}{R}\right)^{2}-\frac{1}{4}\left(\frac{r}{R}\right)^{4}-\frac{7}{24} \\
& T_{\omega}-\underbrace{T_{1}}_{\rightarrow T_{b}}=\underbrace{4}_{T_{0}} \frac{q_{0} R}{K}+\frac{q_{0} R}{K}\left[1-\frac{1}{4}-\frac{7}{24}\right] \\
& T_{\omega}-T_{b}=\frac{q_{0} R}{k}\left[\frac{11}{24}\right]=F(r) \text { only. }
\end{aligned}
$$

$$
\begin{aligned}
\frac{q_{0} \text { or }}{K\left(T w-T_{b}\right)} \cdot R & =\frac{24}{11} \Rightarrow \frac{q_{0}}{K\left(T w-T_{b}\right)} \cdot D=\frac{48}{11} \\
\therefore q_{0} & =h\left(T_{w}-T_{b}\right)
\end{aligned}
$$

$\frac{h D}{k}=\frac{48}{11} \Rightarrow \begin{gathered}\text { Limiting value of Nusselt } \\ \text { Number }\end{gathered}$
The russel number depends upon
Re \& Pr_{r} in case of Forced convection.
Refer to Pageno. 235-247
Heat Transfer - (i) Fourieis Law
(ii) Notes on Th. Conductivity
(iii) Derivations- Parallel wall Derivations- cyl Candricolwals
composite
well and Numericels based on them..

The equation of change for Non is thermal system.
Law of conservation of energy. Which in an extension of first law of thermodynamics will be applied over a differential volume to obtain the eevengy equation.
Firth low of the rmodynamsis

$$
\Delta U=Q+W
$$

Qinnolves: entering and leaving K.E\&I.E.
$W \underset{\sim}{\longrightarrow}$ work dine due to con. \& con
This the creneral expression for the energy conservation thus becomes

$$
(P, y \text { ere. })
$$

Mathematically

The first three terms the present in e ie. combined energy the fort vector.
Energy eneteung the volume element $\Delta x \Delta y \Delta z$

$$
\begin{aligned}
& \text { L.H.S }=\Delta x \cdot \Delta y \cdot \Delta z \cdot \frac{\partial}{\partial t}\left(\xi+v^{2}+\mathcal{v} \hat{U}\right) \\
& \hat{u} \rightarrow \frac{\text { Eunengy }}{\text { mass }} \\
& \widetilde{\square} \text { K.E } \% \text { vol. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rate of increase }=\begin{array}{c}
\text { Nitrate of } \quad \text { Nmr rate of } \\
K \cdot E \cdot \text {. } E \text { heat edit }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { rate or work } \\
& \text { done on } \\
& \text { system by }+ \text { rate of work don } \\
& \text { molecular tors. } \\
& \text { mechanism e.g.bygravity } \\
& \text { ide. by Stresses }
\end{aligned}
$$

(117)

$$
\begin{gather*}
7 \text { 7 } \begin{aligned}
\Delta y \Delta z\left(\left.e_{x}\right|_{x}-\left.e_{x}\right|_{x}+\Delta x\right) & +\Delta z \Delta x\left(\left.e_{y}\right|_{y}-\left.e_{y}\right|_{y}+\Delta y\right) \\
& +\Delta x \Delta y\left(\left.e_{z}\right|_{z}-\left.e_{z}\right|_{z}+\Delta z\right)
\end{aligned}
\end{gather*}
$$

wore done on flund due to granity force (extesselfore)

$$
\begin{align*}
& \text { wone done on flund due to gravig (gur e } \tag{-3}\\
& =f \Delta x \Delta y \Delta z(g \cdot v)=f \Delta x \Delta y \Delta z\left(g x v_{x}+g_{y} v_{t}+g_{z} v_{z}\right)
\end{align*}
$$

from (1). (2) 8 (3)

$$
\begin{aligned}
\text { from (1). (2) } & \frac{\partial}{\partial t}\left(\xi \rho v^{2}+\rho \hat{u}\right)=-\left(\frac{\partial e_{x}}{\partial x}+\frac{\partial e_{y}}{\partial y}+\frac{\partial e_{z}}{\partial z}\right)+\rho\left(g_{x} v_{x}+g_{y} v_{y}+g_{z} v_{z}\right) \\
\Rightarrow & \frac{\partial}{\partial t}\left(\xi \rho v^{2}+\rho \hat{u}\right)=-(\nabla \cdot e)+\rho(v \cdot g)
\end{aligned}
$$

Extending vectore

$$
\begin{aligned}
& \text { rtanding vectore } \\
& e=\left(\xi e v^{2}+\rho \hat{u}\right) v+q+p v+[\tau \cdot v] \\
& \text { Thus }
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\xi \rho v^{2}+\rho \hat{u}\right)= & \left(\nabla \cdot\left(\xi \rho v^{2}+\rho \hat{u}\right) v\right)-(\nabla \cdot q)-(\nabla \cdot \rho v) \\
& -(\nabla \cdot[\tau \cdot v])+\rho(v \cdot g)
\end{aligned}
$$

Terms
L.H.S.

RH.S.
(i) rate of energy addition due to conv. transport.
(2) - conduetive transport (Motecular $\begin{gathered}\text { Transport) }\end{gathered}$
(3) - work done by pressur force/vol.

(4) - work done by viscous force. ${ }^{\circ} \mathrm{C}$ has same unit as p
(5) - wone done by gravity force.

Above eqn doesn' inelude nuckear, radioactive. electromagnatic or chemical farms' of energy.

Special Formsof Energ eqn:
The energy eqn is

$$
\begin{aligned}
& \text { The energy eqn is } \\
& \begin{aligned}
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho \cdot v^{2}+\rho \hat{u}\right) & =-\left(\nabla \cdot\left(\frac{1}{2} \rho r^{2}+\rho \hat{u}\right) \bar{u}\right)-(\nabla \cdot \bar{q})-(\nabla \cdot p \vec{v}) \\
& -(\nabla \cdot(\bar{\tau} \cdot \bar{\gamma}))+\rho(\bar{y})
\end{aligned}
\end{aligned}
$$

from this we Subtract the Mreohavied emesy eq"h

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\frac{1}{2} \rho \rho^{2}\right)=-\left(\nabla \cdot \frac{1}{2} \rho \cdot x^{2} v\right)-(\nabla \cdot p \vec{v})-p(-\bar{\nabla} \cdot \vec{v}) \\
& -(\bar{\nabla} \cdot[\bar{\sigma} \cdot \bar{v})-(-\bar{a}: \bar{\nabla} \bar{v})+\rho(\bar{v} \cdot \bar{g}) \\
& \frac{\partial}{\partial t}(f \hat{u})=-(\bar{\nabla} \cdot \rho \hat{v}) \bar{v}-(\nabla \cdot \bar{q})+p(-\bar{\nabla} \cdot \bar{v})
\end{aligned}
$$

$$
\begin{aligned}
& \text { ny, vis com com pissiption }
\end{aligned}
$$

$$
\begin{align*}
& \frac{D \hat{U}}{D t}=\frac{D \hat{H}}{D t}-\frac{1}{\rho} \frac{D P}{D t} \\
& \frac{\rho \frac{D \hat{H}}{D t}}{}=-(\bar{\nabla} \cdot \bar{q})-(\bar{\tau}: \bar{\nabla} \bar{v})+\frac{D P}{D t} \tag{1}\\
& \left.\frac{D t}{P \frac{D \hat{H}}{D t}}=\rho \hat{P} \hat{D} \frac{D T}{D t}+\rho\left[\hat{v}-T\left(\frac{\partial \hat{v}}{\partial T}\right)_{p}\right] \frac{D P}{D t}\right] \begin{array}{l}
\text { Eromeqn } \\
38-7
\end{array} \\
& =f \hat{G} \frac{D T}{D t}+\rho\left[\frac{1}{\rho}-T\left(\frac{\partial^{\prime} P}{\partial T}\right)_{P}\right] \frac{D P}{D t} \text {. }
\end{align*}
$$

$$
\begin{equation*}
\int \frac{D \hat{H}}{D T}=f \hat{C P} \frac{D T}{D t}+\left[1+\left(\frac{\partial \ln P}{\partial \ln T}\right)_{p}\right] \frac{D P}{D t} \tag{2}
\end{equation*}
$$

Substituting thin value into en (1) we have

$$
\rho \hat{c} p \frac{D T}{D t}=-(\bar{\nabla}, \bar{q})-(\bar{T}: \bar{\nabla} \bar{v})-\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P} \frac{D P}{D t}
$$

Eq n of chang for temperature
when fourieis law is used $-(\nabla \cdot q)=(\nabla \cdot K \nabla T)$ if k is constant $=\left(k \cdot \nabla^{2} T\right)$
Special cases.
(i) for ideal gas $\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{p}=-1 \quad$ So,

$$
f \hat{C p} \frac{D T}{D t}=k \nabla^{2} \tau+\frac{D P}{D t}
$$

(ii) for fund flowing in a constant pressure system

$$
\begin{aligned}
& \frac{D P}{D t}=0 \therefore \\
& \rho \hat{C P} \frac{D T}{D t}=K P^{2} T
\end{aligned}
$$

(iii) For fluid will constans density

$$
\begin{aligned}
& \quad(\partial \ln \rho / \partial \ln T)_{P}=0 \\
& \therefore \hat{\rho} \hat{C}_{P} \frac{D T}{D t}=k \nabla^{2} T
\end{aligned}
$$

(iv) For astatimary sold, v is zero hence

$$
\rho \hat{c}_{p} \frac{\partial T}{\partial t}=k \nabla^{2} T \rightarrow \text { Founder's eq }
$$

Relevant dimpuninton groups

$$
\begin{aligned}
& \text { Ree, }=\left[\frac{l o v_{0} e}{\mu}\right]=\text { Rregus monetse } \\
& p_{r=}=\left[\frac{c p \mu}{k}\right]=\frac{\nu}{\alpha}=p_{\text {ravel }} / 1 \text { nuinbee } \\
& \operatorname{Gr}=\left[g \beta\left(T_{1}-T_{0}\right) \operatorname{lo}^{3} / \nu^{2}\right]=\text { Crableof Number } \\
& \text { Brar [} \left.\mu v_{0}^{2} \mid k\left(T, r T_{0}\right)\right] \quad \text { Pecter number } \\
& P e ̀=R e P r . \\
& R G=G r P r \\
& E C=R r / \rho^{\rho} \\
& \begin{array}{l}
=\text { Pecter } \text { Rayd Numbon } \\
=\text { Ras }
\end{array} \\
& =\text { Eekent Vumber }
\end{aligned}
$$

Refor to Table $11: 5-3$
free convection Priblom:
ler. Flow pationn b/w tivo plaralyel p latos maintaine at defferens tomperdtives fluids demsty p and oiscosity μ is located b/w the plotes

It in assumod that temp dyfference is sufficienlly Snnals.

* System isclosed of the top a bortomi pare to thase tenp drifg. the fland as hot end suses and that on cold end diescends an-d the velouty profile as ghown develops
* The plore are assumed to be very toll so the end effects cam be n-ghected.
* Temperaterra es a frr of ' y ' alone.

Select a shell a hicioness of Δy it maree eveyy bolanee.
in ' y ' direction there is no convertion and beos prausfor es only by conduction (biegteet the viswons healing torm)

$$
\begin{aligned}
& \therefore \quad-\frac{d q_{y}}{d y}=0 \quad \text { or } k \frac{d^{2} T}{d y_{1}^{2}}=0 \\
& \text { at } y=-B, \quad T=T_{2}, \quad y=+B \quad T=T_{1} \\
& \therefore T=\bar{T}-\sum \Delta T^{Y} / B \quad \begin{array}{l}
T=Y\left(T_{1}+T_{2}\right) \\
\\
\therefore T=T_{2}-T_{1}
\end{array}
\end{aligned}
$$

Now lats find velocily dististation
mavere sholl botomes over the se $\Delta y \mu_{0} b$. $\phi_{\text {xr }}, \phi_{y z} \quad \phi_{z z}$.

$$
\begin{aligned}
& d_{x y}=p v_{x} v_{z}^{0}+p p_{0}^{0}+\left[-\mu\left(\frac{\partial v_{z}}{\partial_{y}}+\frac{\partial v_{x}}{\partial z} v_{z}=0\right.\right. \\
& \phi_{y z}=\rho v_{y} v_{z}+p \mu_{0}^{0}+\left[-\mu\left(\frac{\partial v_{z}}{\partial y}+\frac{\partial v_{y}}{\partial_{z}}\right)\right]= \\
& \phi_{z z}=\rho v_{z}^{2}+p+\left[2 \mu \frac{\partial v_{z}}{\partial / 2}\right] \\
& \text { on mabing balemue }
\end{aligned}
$$

$$
\mu \frac{d^{2} v_{z}}{d y^{2}}=\frac{d p}{d z}+\rho g
$$

$\mu \rightarrow$ assumed constank
$f=f(T) \quad \because$ a atural convection
As the ΔT is surall change in ρ wielse smale bence ρ can be espanset about F using Toycorteries

$$
\begin{aligned}
\therefore \rho & =\left.\rho\right|_{T}=\bar{T}+\left.\frac{d \rho}{d T}\right|_{T=\bar{T}}(T-\bar{T})+\cdots \\
& =\bar{P} \pm \bar{P} \bar{\beta}(T-\bar{T})
\end{aligned}
$$

$\beta \rightarrow$ is Thmeere pavs on coeffi

$$
\begin{aligned}
\beta & =\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \\
& =\frac{1}{(1 / p)}\left(\frac{\partial(1 p)}{\partial T}\right)_{p} \\
& =-1 / \rho\left(\frac{\partial p}{\partial T}\right)_{p}
\end{aligned}
$$

$$
\therefore \frac{d^{2} V_{t}}{d y^{2}}=\frac{d p}{d q}+[\bar{\rho}-\bar{\rho} \bar{\beta}(T-\bar{T})] g
$$

Note that the Jempablin crange in Anell thence the somity phange wilsh. sondll Assume thet at $T=\left(\frac{1}{2}\left(T_{2},-r_{1}\right)\right.$

$$
\rho=\bar{\rho} 0
$$

Using 7 agleof sunes explan sim $\&$ can be then expanied quow T ap

$$
\begin{aligned}
& \rho=\rho\left|\frac{d P}{d T}\right|_{T=T}(T-\bar{T}) \\
& =\bar{e}-\bar{P} \bar{B}(T-\bar{T})
\end{aligned}
$$

$$
\left(\overline{\left.e_{,} T\right)(\bar{p}, T)}\right.
$$

$\bar{P}, 4 \bar{P}$ are the Density and the Notume exp ausion foetrerent of \bar{T} β is tifive of ∞

$$
\begin{aligned}
& \text { is tefive ep } \\
& \beta=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{p}=\frac{1}{(1 / p)}\left(\frac{\partial\left(l_{p}\right)}{\partial T}\right)_{p} \\
& =-\frac{1}{p}\left(\frac{\partial e}{\partial T}\right)_{p}
\end{aligned}
$$

$$
f-\frac{1}{p}\left(\frac{\partial \rho}{\partial \tau}\right)_{p}
$$

Therefore

$$
\mu \frac{d^{2} v_{3}}{d y^{2}}=\frac{d p}{d \xi}+(\bar{p}-\bar{p} \bar{\beta}(T-\bar{T}) \cdot g
$$

viscousforce prenure graving Buyoney tore.
Buar $T=T-\frac{1}{2} \Delta T \quad V_{B} \therefore$

$$
\begin{aligned}
\mu^{\frac{d^{2} v_{3}}{d y^{2}}} & =\left(\frac{d p}{d g}+\bar{f} g\right)-\bar{\rho} g \bar{\beta}(\bar{T}-\xi \Delta T / B-\bar{T}) \\
& =\left(\frac{d p}{d z}+\dot{r} g\right)+\bar{\rho} g \bar{p} \Delta T-(\gamma)
\end{aligned}
$$

B.C.C
(1) at $y=-B, \quad v_{3}=0$,
(2) at $y=+3 \quad v_{3}=0$

$$
\begin{aligned}
\mu \frac{d v_{3}}{d y} & =\left(\frac{d p}{d 3}+\bar{\rho} g\right) \cdot y+\frac{1}{\mu} \bar{\rho} g \bar{\beta}\left(\Delta y T \cdot y_{1 B}^{2}\right)+c_{1} \\
\mu v_{3} & =\left(\frac{d p}{d 3}+\bar{\rho} g\right) \cdot \frac{y^{2}}{2}+\frac{1}{12} \bar{\rho} \cdot g \bar{\beta}\left(\Delta T \frac{y^{3}}{B}\right)+c_{1} y+c_{2}
\end{aligned}
$$

from (1) B.C.

$$
0=\left(\frac{d P}{d \xi}+\overline{\rho g}\right) \cdot \frac{B^{2}}{2}-\frac{1}{12} \bar{\rho}^{2} \bar{\beta} \cdot \Delta T \cdot B^{2}-c_{1} B+c_{2}
$$

II $3 \cdot C$

$$
O=\left(\frac{d p}{d \xi}+\bar{\rho} g\right) \cdot B^{2}+\frac{1}{12} \bar{\rho} g \bar{\beta}\left(\Delta T \dot{B}^{2}\right)+c_{1} B+C_{2}
$$

$x+y$

$$
c_{2}=-\left(\frac{d \rho}{d 3}+\tilde{\rho} g\right) \cdot \frac{B^{2}}{2}
$$

\therefore from x

$$
c_{1}=-\frac{1}{12} \bar{\rho} g \bar{\beta} \Delta T \cdot \square
$$

$$
\begin{aligned}
& \left(\frac{d p}{d 3}+\overline{+}\right) \frac{\beta ?}{2} \quad c_{1}=-\frac{1}{12}+g \bar{\beta} \Delta T B \\
& \therefore v_{3}=\frac{d P}{2 \mu}\left(\frac{d P}{A_{3}}+\bar{T} g\right)\left(y^{2}-B^{2}\right) \\
& +\frac{1}{12 \mu} \bar{\mp} g \bar{\beta} \Delta T \frac{y^{3}}{B}-\frac{1}{12} \bar{f} \partial \bar{\beta} \Delta T B \cdot Y \\
& V_{3}=\cos ^{2} \frac{B^{2}}{2 \mu}\left(\frac{1 \theta}{d r}+r^{-} g\right)\left(\left(\frac{y^{\prime}}{b}\right)^{2}-1\right) \\
& +\frac{\frac{1}{n \mu}}{\frac{\rho}{} g \bar{\beta} \Delta T \text { y. } B}\left(\frac{y^{2}}{B^{2}}\right. \text { 1) } \\
& \therefore V_{3}=\frac{1}{12 \mu} \bar{\rho} g \bar{\beta} \Delta T B^{2}\left[\left(\frac{y}{B}\right)^{3}-\left(\frac{y}{B}\right)\right]+\frac{B^{2}}{2 \mu}\left(\frac{d p}{d B}+\bar{\rho} g\right)\left[\left(\frac{y}{B}\right)^{2}-y\right.
\end{aligned}
$$

Mans Bolance
The not was flow in the z direction is gen

$$
\int_{B}^{+3} \rho v_{3} d y=0 \quad \frac{d p}{d 3}=-\overline{\rho g}
$$

Sutititube

$$
\rho=\bar{\rho}-\bar{\rho} \bar{\beta}\left(\frac{1}{2} \Delta T y / B\right)
$$

v_{3} prom above eq n
Just rememberetis $(D) B_{A}$ of B in the limits so the evens family enoren power of y after integration wis cancel out and only add pourer lem vies remaining which is second termini v_{3} expression. Avo that yeld s

$$
E V_{3}=\frac{(\bar{\rho} g \overleftarrow{\beta} \Delta T) B^{2}}{1^{2} y}\left[\left(\frac{y}{1 B}\right)^{3}-\left(\frac{y}{B}\right)^{\prime}\right)
$$

\& org velocity of copward mounsy sheare

$$
\begin{aligned}
& \left\langle v_{3}\right\rangle=\frac{\int_{-B}^{0} v_{3} d y \cdot \omega}{(-B \cdot \omega)}=\frac{w_{1} \bar{\rho} g \bar{\beta} \Delta T B^{2}}{\lambda^{2} \mu^{4}}\left[\frac{y^{4}}{4 \beta^{3}}-\frac{y^{2}}{2 B}\right]_{-B}^{0} \\
& =\frac{\frac{\bar{\rho} g \bar{\beta} \Delta B^{2}}{48 \mu}\left[f \frac{1}{\theta}\right] \cdot \varphi}{\mu \Delta \cdot \mu \delta}=\frac{1}{48} \frac{\tilde{\rho} g \bar{\beta} \Delta T B^{2}}{\mu}
\end{aligned}
$$

There expression fors show thot then 1 wotion in a consequerce of buyont force associopect weth the temperalm. gradieuts.

Let's defin a dimenstionles velocity

$$
Z_{Z}=\frac{B V_{3} \bar{P}}{\mu} \quad \& \quad(Z / 3)
$$

thus

$$
V_{3}=\left\{\operatorname{Gr}\left(y^{3}-y\right)\right.
$$

where Craflorg runtser $=$ Cor

$$
\begin{aligned}
& \text { Crafarg runtser }=\text { दr } \\
&= {\left.\left[\frac{\left(\rho^{-2} g \bar{\beta} \Delta T\right) B^{3}}{\mu^{2}}\right]=\frac{\rho \alpha \beta^{3} \Delta p}{\mu}\right] } \\
& \Delta \Leftrightarrow P
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
G r=\frac{\bar{\rho} g B^{3} \bar{\rho} \beta}{\mu^{2}}\left(T_{2}-T_{1}\right)=\frac{\bar{\rho} g B^{3}}{\mu^{2}}\left[\overline{\bar{\rho} \bar{\beta}}\left(\left(T_{2}-\bar{T}\right)-\left(T_{1}-\bar{T}\right)\right]\right]
\end{array} \\
& =\frac{\bar{\rho} g B^{3}}{\mu^{2}}\left[\bar{\rho} \bar{\beta} \Delta T_{2}-\bar{\rho} \bar{\beta} \Delta t_{1}\right] \\
& =\frac{\bar{\rho} g \beta^{3}}{\mu^{2}}\left[\frac{\bar{\rho}-\bar{\rho} \bar{\beta} \Delta T_{1}}{L \rho_{1}}-\frac{\left(\bar{\rho}-\bar{\rho} \bar{\beta} \Delta T_{2}\right)}{\zeta P_{2}}\right] \\
& G r=\frac{\bar{\rho} g B^{3}}{\mu^{2}} \Delta \rho \\
& \Delta \rho=p_{1}-\rho_{2} \\
& \text { ~TV } \\
& \Delta T_{1}=T_{2}-T_{1}
\end{aligned}
$$

For solids the gruerving heat rraustor equ.

Unsteady, state hecot bavifer

Baicenn
considren a cube of dimension $\Delta x, 凶 y, \sigma \Delta z$,

$$
q_{x}=-k A \frac{\partial T}{\partial x}
$$

fro beat conducsion is x direct.

Healr Bodamee
rate of heat (imput - owput) + generlion

$$
\left(\left.\cdot q_{x}\right|_{x}-\left.q_{x}\right|_{x+\Delta x}\right)
$$

$$
+\dot{q}=\Delta x \cdot \Delta y \cdot \Delta z \cdot \rho c_{p} \frac{\partial T}{\partial t}
$$

$$
\begin{array}{ll}
\therefore \quad & \dot{q}+\frac{\partial q x}{\partial x}=\cos \frac{\partial x}{\partial t} \\
& \text { if } \quad q=0 \\
& \quad \operatorname{tecp} \frac{\partial \tau}{2}=
\end{array}
$$

$q \rightarrow$ rare of Heal geveration/uot.

$$
\begin{aligned}
\rho \operatorname{cp} \frac{\partial T}{\partial t} & =\left(\left.k \frac{\partial T}{\partial x}\right|_{x}\right. \\
& \left.=\left.k \frac{\partial T}{\partial x}\right|_{x+\Delta x} \dot{q}\right) \cdot \Delta x \cdot \Delta z \\
& =\Delta x \Delta y \cdot \Delta z-\rho c p \frac{\partial T}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
& q^{\prime}+k \frac{\partial^{2} T}{\partial x^{2}}=\rho \operatorname{co} \frac{\partial T}{\partial t} \\
& \text { or } \\
& \frac{\partial T}{\partial t}=\frac{k}{\rho \partial^{2} T} \frac{\dot{q}}{\rho c^{2}} \\
&=\alpha \frac{\partial^{2 T}}{\partial x^{2}}+\frac{\dot{q}}{\rho c_{p}}
\end{aligned}
$$

U, e, epare assumed conrtants

SI Uuib

$$
\begin{array}{ll}
\alpha \rightarrow m^{2} / \mathrm{s}, & T \rightarrow k \\
\rho \rightarrow k g / \mathrm{ur}^{3} & \quad \dot{q}=\mathrm{k} / \mathrm{m} 3, \quad \mathrm{~m}=\mathrm{w} / \mathrm{m} \cdot \mathrm{k} \\
& =\mathrm{J} / \mathrm{kg} \cdot \mathrm{k}
\end{array}
$$

For thave dimension case

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=\alpha\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right)+\frac{\dot{q}}{e \varphi p} \\
& \frac{\partial T}{\partial t}=\alpha \nabla^{2} T+\frac{q}{\rho \varphi}
\end{aligned}
$$

Hearing a sami-intinite slab
A solidwarterid occupying the shaece form $y=0$, to $y=\infty$ hat invitiolten $T_{1} b_{0} T_{0}$ in ain ar are α aite ten- p cost $y=0$ is raiselto

Tblare the

of $t \leq 0 \quad T \neq 0=T_{0} I-C$ $t=0, \forall>0 \quad T_{y=0}=T_{1} B=$
fin $T(y, t)$

SNn" define $\theta=\frac{T-T_{0}}{T_{1}-T_{0}}$

$$
\begin{aligned}
& \text { I.C. } t \leq 0 \quad \forall=0 \quad \forall y \\
& B C, \quad y=0 \quad \theta=1 \quad \forall t>0 \\
& y=\infty \quad \theta=0 \quad \forall t>0
\end{aligned}
$$

$$
\theta=1-\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{y}{\sqrt[1 \omega x]{ }}} \exp \left(-\eta^{2}\right) d \eta
$$

Ploce into previous nomeention
eqng

$$
\therefore \frac{T-T_{0}}{T_{1}-T_{0}}=1-6 \cdot 6 \frac{y}{\sqrt{1 \alpha+t}}
$$

$$
\text { plot } \frac{T-T_{0}}{T_{1}-T_{0}}
$$

when

$$
\frac{y}{T \alpha_{x}}=\frac{2 T \text { Then }}{\operatorname{erf} \frac{y}{\sqrt{4 \alpha} t}} / \frac{T-T_{0}}{T_{1}-T_{0}}=0.01
$$

$$
\therefore y=4 \sqrt{\alpha t}=0.99
$$

$\delta=$ thin thermal penens-lion rtaicianes.
that weans for distances $y>\delta_{T}$ the temperalue has change by les than $1 x$ of $T_{1}-T_{0}$
wall the at the

Bot number and Nussel number are similar but the difference is in conductivity in Nu it is liquid conductivity whereas in Bi it is solid conductivity. Further, Bi number tells us whether Lumped capacitance model is used? if Bi is less than 0.2 then lumped capcitance model is used to get the temperature of an object.
In lumped capacitance model the spatial variation of the term
In lumped capacitance model the spatial variation of the temperature withing the object is neglected.

Threamed conduetivity descrimes at what rate heat is conducted in a materiol

Founin's law of Hreat conduction

To maintain $\Delta T=T_{1}-T_{0}$
Cerfaim anurut of heat must be dupplied say (Q)

$$
\frac{Q}{A}=-k \frac{\Delta T}{y} \frac{\text { or in differential from }}{\substack{\text { Heat flow } \\ \text { Har }}}
$$

(t) ive quantity

For temperolure rasation in three dimentional. form.

$$
\begin{align*}
& q_{x}=-k_{x} \frac{\partial T}{\partial x} \tag{1}\\
& q_{y}=-k_{y} \frac{\partial T}{\partial y} \tag{2}\\
& q_{z}=-k_{z} \frac{\partial r}{\partial z} \tag{3}\\
& \bar{q}=\delta_{x} \cdot q_{x}+\delta_{y} \cdot q_{y}+\delta_{z} \cdot q_{z}
\end{align*}
$$

$$
\bar{q}=-K \nabla T
$$

Three dimrentional form of Founieris lavo.

It describes motecular tranzoot of heal ty in a isotropic unedia (k constants) k-may vary from $0.01 \frac{w}{m \cdot k}$ to $1000 \frac{w}{m \cdot k}$
(gases)
(Metab)
Prantline Number is the anoltes importans parameter in theat-tramsa
Prnumber for gases \rightarrow Cow $0 \cdot x$

$$
\begin{array}{r}
\text { liquids } \longrightarrow x \cdot 0 \text { to } \times \times \times \times .0 \\
\text { glyereof } 30^{\circ \circ} \mathrm{C}-6580 \\
350^{\circ} \mathrm{C}-329
\end{array}
$$

Enargy is a selar
$\mathrm{Pr} \rightarrow$ laquid metals - very low $\frac{0.00 \times x}{d_{1}}+0.0 .0 \times \times$
(See haquin matols haurdsork)

k of sotids \rightarrow wien tamp. k may be ${ }^{\text {bigh or }}$ bow
Es AL. 373.2 $\rightarrow 205.9$

$$
\text { Cd } \begin{aligned}
& 573.2 \longrightarrow 268 \quad 873.2 \rightarrow 423 \\
& 273.2 \longrightarrow 93.0 \\
& 373.2 \longrightarrow 90.4
\end{aligned}
$$

wood

$$
\text { panallel tooxis } \rightarrow \quad 0.126 \mid \text { anisotropic }
$$

$$
\text { Normal tuats } \rightarrow 0.03 B
$$

Temperature epressure dependiace of Thernal conductinsty:-
X Jou wayes refer. bo the monogeph ${ }^{m}$ fig $9.2-1$
 Chapman enslog formela for k of a monoatomic
$k \rightarrow \frac{\text { Cal.s. }}{\text { an.s. }}$
$T \rightarrow k_{0}$ collision
$\sigma \rightarrow \mathbb{A}^{0}$ (collision $\begin{aligned} & \text { diameter }\end{aligned}$
$\Omega_{k} \rightarrow$ whlision giniegrel ther Lennard-Jones mad potention taluty Table E. 2
for polyatomie gas at low density

Formix, of gai of lowdensity

$$
k_{\text {mix }}=\sum_{\alpha=1}^{N} \frac{x_{\alpha} k_{\alpha}}{\sum_{p} x_{\beta} \phi_{\alpha \beta}}
$$

$x_{\alpha} \rightarrow$ whte fraction $k x \rightarrow$ Thr cond of puse gas
$\phi_{\alpha \beta} \rightarrow$ constont
Q.9.3-1

Comperke the therwal condexcturity of a monoatanic ge of low Lansigy
For $\mathrm{Ne} \rightarrow$ Paraneter (Leonand-jinhes) Table E. 1

$$
\begin{aligned}
& \sigma=2.789 \mathrm{~A}, \quad G k=35.7 \mathrm{~K}, \quad M=20.183 \\
& \text { (} \left.\epsilon=\begin{array}{c}
\text { chavacteristic } \\
\text { entersy }
\end{array}\right) \\
& \text { yourt urt. }
\end{aligned}
$$

\therefore at 37?k

$$
k T / \varepsilon=\frac{373.2}{35.7}=10.45
$$

from toble E. 2

$$
\begin{aligned}
& \text { E. } 2 \quad \Omega_{k}=\Omega_{\mu}=0.821, ~\left(\frac{\pi M)}{\sigma^{2} \Omega k}\right. \\
& k
\end{aligned}
$$

Now
9.3.2

Estmake the thermal cordectinvity of unteentan oxygrea of 350 k ans low pressuse
(Th. conduetinity of Polyatornic gas as low density)

$$
\text { Mrr.wr. or } O_{2}=32.0 \quad \tilde{C}_{P, 300 k}=7.019 \frac{\mathrm{col}}{\mathrm{~g} \cdot \mathrm{wn}_{-k} \mathrm{~K}}
$$

From Table E. 1 teonard fones paranater for unlreular oxygien to be

$$
\sigma=3.433 A^{\circ} \text { an } \quad \in k=113 k
$$

At 3rk then $k \Gamma / E=\frac{300}{113}=2.655$ Toble E. $2 \Omega_{\mu}=1.074$ Thenistiong

$$
\begin{aligned}
\text { from } \begin{aligned}
& \text { eq. } 1.4 .18 \\
\mu= & 2.6693 \times 10^{-5} \frac{(M 1)}{\sigma^{2} \Omega_{\mu}} \\
= & 2.6693 \times 10^{-5} \frac{32.00 \times 300}{(3.433)^{2}(1574)} \\
= & 2.065 \times 10^{-4} \text { geur.s }
\end{aligned}
\end{aligned}
$$

from zucken

$$
\begin{aligned}
l_{e} & =\left(\tilde{c}_{p}+\frac{5}{4} R\right)(\mu / \mathrm{M}) \\
& =(7.079+2.484)\left(2.065 \times 10^{-4}\right) / 32.00 \\
& =6.14 \times 10^{-5} \frac{\operatorname{Col}}{\text { chas } k}
\end{aligned}
$$

(89)

$$
9,7-3 \text { do four } 2.1 \text {. }
$$

* Themor conduetiviry of lavials
$k=2.80\left(\frac{N}{\tilde{v}}\right)^{\text {/h }} K v_{s}$ (urdifed Brideg mavis formula

$$
\left(\frac{\tilde{v}}{\tilde{N}}\right) \rightarrow \frac{\text { volume }}{\text { wotecnte }}
$$

moditichen $3 \longrightarrow 2.80$ eq" appliubste A low teusities well obe above critied density
(b) Sonic Velociry $\rightarrow v_{s}$
$\frac{\stackrel{V}{N}}{N} \rightarrow$ volume / uofecule
$\mathrm{K} \rightarrow \mathrm{BOIt}_{3}$ man Nouttan-
The velocity of how

$$
\begin{aligned}
& \text { town } \\
& \text { ound } \\
& v_{s} \\
& c_{v}\left(\frac{\partial}{\partial P}\right)
\end{aligned}
$$

$\left(\frac{\partial P}{\partial \rho}\right)_{T} \rightarrow$ way be obfined fromeah I) stleatle
$\left(\frac{C_{P}}{C_{V}}\right) \longrightarrow 1$ forlanids except nean critical

* Prefiction on the thamal conduesvity of a hanid
a.प.1 The densily of liquid celc at $20^{\circ} \mathrm{C}$ and 1 ahmis 1.595 Htam 3 and its issthermal compresisinility, $\frac{1}{\rho}\left(\frac{\partial P}{\partial P}\right)_{T}=90.7 \times 10^{-6} \mathrm{athin}^{-1}$
What is the thermal condictista. What is the thernal condictivity: $\left.\frac{\partial P}{}\right)_{T}$
sinn

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial \rho}\right)_{T}=\frac{1}{\rho\left(\frac{1}{\rho}\right)\left(\frac{\partial P}{\partial P}\right)_{T}}=\frac{1}{1.595 \times 90.7 \times 10^{-6}}=\frac{6.91 \times 10^{3}}{\frac{\mathrm{an} 7^{2}}{g}} \mathrm{cmi} \\
& 6.91 \times 10^{23} \times 1.0133 \times 10^{6} \frac{\mathrm{~g}}{\mathrm{c}_{16, \mathrm{~s}^{2}}} \cdot \frac{\mathrm{~cm}^{2}}{\mathrm{~g}}=7.00 \times 10^{9} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Arsuming $\frac{C_{S}}{C_{V}}=1.0($ tolloquich $) \rightarrow V_{S}=\sqrt{\frac{P}{L}\left(\frac{\partial P}{\partial P}\right)_{T}}=8.37 \times 10^{4} \frac{\mathrm{~cm}}{5}$ molar volume $\tilde{v}=\frac{m}{\rho}=\frac{153.84}{1.595}=96.5 \frac{\mathrm{man}}{\mathrm{g} \text { wole }}$

$$
\begin{align*}
& \text { fromk }=2.80\left(\frac{\tilde{N}}{V}\right)^{2 / 3} K \bar{v}_{s}=2.80\left(\frac{6.023 \times 10^{23}}{8.37 \times 10^{21}}\right)^{2 / 3}\left(1.3815 \times 10^{-16}\right) \tag{a0}\\
&=1.10 \times 10^{4}\left(\mathrm{~cm}^{-2} /\left(\frac{e r v 5}{k}\right)\left(8.37 \times 10^{4}\right)\right. \\
&\left.(0 \mathrm{mals})^{4}\right)
\end{align*}
$$

Themal conduciring of sultids:
Th.c. $($ (h) k) S Shatat be areasured experimatally as they depferes on many freros (porosity mientilio, fhand containe in the porel)

Pure metals seties heat conduetors than nonmatals Crystallin. metab condects beat wore readly than amophoues moterich. pry porous poor beot conduetson.

reln with etecesied thermal conductring forpure metal.

$$
\frac{k}{k e T}=L
$$

(Lorenjean)
ke \rightarrow-electicel Th. C.
$L \rightarrow$ Core 3 Number

$$
\begin{aligned}
& \text { Core3 pumber } \\
& \approx 22-29 \times 10^{-9} \frac{\mathrm{vit}^{2}}{\mathrm{k}^{2}} \\
& \text { tor } \\
& \text { pute wetchar } 0^{\circ} \mathrm{C}
\end{aligned}
$$

"L" incieses Gy 10 - 20y, PO/000 R Typicdly.
"At rexy. loo trent wotan becompe sippe condutor.
ofelectricity hence Lvaries ropodly in the at lor temp. legion. (Supernordula, regory.
(91)

Assignmenth gAT 9A K
Sffectire Thermal conductuly of sols?
Solids vilk pores or solid diperkedin onother lolid (ruo ptase sold).

It cam be treated as a homogenvous moteriol othermal conductining (Keffl)
\& convecture Trompon of Energy:
Traunpost due to bure anotion os gawo acrossthe surface element ds 1 to the x axi is is

Note $\frac{1}{2} \rho v^{2}=\frac{1}{2} \rho\left(v_{\underline{x}}{ }^{2}+v_{\underline{y}}{ }^{2}+v_{z}^{2}\right)$ vr..

$$
\begin{aligned}
& \text { conve.ehre }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{\rho} v^{2}+\rho \hat{u}\right)^{+\left(1 / \rho \rho u^{2}+\rho \hat{u}\right) \delta_{r} v_{3}=}
\end{aligned}
$$

atis cullied conretimanss thaveator it is athes from () we side to (d) ive Fode
wone Associotred welh, Moleculan mution:

$$
\pi_{x}, \pi_{y}, \pi_{z} \rightarrow \text { stress vector }
$$

Asthe fhitith uring wihn velocity V
θ ive
on (A) flund is
note. The thad on the
rake of worn cone by fhin Note. The thid on the a ninus side of the hurtare epents an $\pi_{x} d s$ on

$$
\left(\pi_{x} \cdot v\right) d s
$$

ein the componert from
$\left(\pi_{x} \cdot v\right)=n_{x}$

$$
\begin{aligned}
& \left(\pi_{x} \cdot v\right)=\pi_{x x} v_{x}+\pi_{x y} v_{y}+\pi_{k z} y_{z}=1 \\
& \left(\pi_{y} \cdot v\right)=\pi_{y x} V_{x}+\pi_{y y} \cdot \forall_{y}+\pi_{y z} V_{1}=(\pi \cdot v)_{y}
\end{aligned}
$$

$\pi \rightarrow$ Molecular swess Tensor

$$
\begin{aligned}
& \text { Mriecular swess Tensor } \\
& \pi=P \delta+\tau \\
& \text { So that } \quad[\pi \cdot v]=\frac{\text { wher }}{\pi+1}\left(\pi_{x} \cdot v\right)+\delta_{y}\left(\pi_{y} \cdot v\right)+\delta_{z}\left(\pi_{z} \cdot v\right) \\
& \hline v+[\tau \cdot v]
\end{aligned}
$$

$$
\pi=p \delta+\tau
$$

The term pr can then be combined wieh the internal evreagy term $\rho \cup U$ to give an entholpy Ferm

$$
\rho \hat{u} v+p v=\frac{\rho(\hat{u}+P / \rho)}{\hat{u} u}
$$

$$
=\beta \rho(\hat{v}+p \hat{v}) v=\rho \hat{H} v .
$$

mateculan bear flero varon
coribrwed everary flus verpor.

tevt by ensitholsy/wan af the refeserce state.

$$
\begin{aligned}
\text { integral overp } & =0 \text { (bor ithe }{ }^{\text {an }} \text { gas) } \\
& \left.=1 \text { (} p^{\circ}\right) \text { for thichs }
\end{aligned}
$$

$=1 / p\left(P-P^{0}\right)$ for thions of const ρ
(91.6

The integral ave T becomes
$c_{p}\left(T-T^{0}\right)$ is the bed capacity can be segared as contr. over the beteroust tans range. Assigmenerit 9A.! MA.? TA.B. DA in TA. $1, \quad$ AA. $8, \quad 9 A \cdot 10$

Chapfer 10 Bind.
Shell Enegry Bolane a tiemp destrisation in Borids and Lammar flow.

General Equegy Bedaver eqh of SS.

Tuisis a I law of themo writen for open symiour.
Above equ generotres a FioDI for this blab to be solved wur suitabtie $I C$, commorm B.C
(1) Spenty the surpale temp.
(2) heat flus normol to a lufpace nay be given (as good os spentying lw nownd corp of the tents. gratimens.
(3) Ters contring contonity at the Duface T emp 8 heak Sufac
(4) on solid the $\left(T_{0}-T_{b}\right)$ ventmalaw of coolvg

Heas condenction with an rlectred Drurce:

Uniformbeat production by electricaboling Se.
wire of Radius h and electrical. condrutavity ke $\mathrm{Jhm}^{-1} \mathrm{am}^{-1}$
heal Source
Assuring tuar the temp nise is vit so laige the k 大ke $\neq f(T)$
The sufare of the wite is mantavied of To Q2 Fwo the rodiol temp derributi-
forenergy belquce comsedter a rhell og thicioves ar. and loug $h_{h} L_{1}$

$$
\begin{aligned}
& \text { Sincue } N=0 \text {. }
\end{aligned}
$$

$q \rightarrow$ heat flus nultecorlan

$$
\left(q_{r}-q_{r+\Delta r}\right) 2 \operatorname{rrL}: \Delta r \rightarrow \text { very smal }
$$

\&
liatie of heot moduction $=(2 \pi r \Delta x L$). Se.
combins

$$
\begin{aligned}
& \left(r q_{r}-r q_{r+o r}\right) 2 \pi r L+2 \pi r \text { ar } 1 \text {. Se 2o } \\
& -\frac{d(q r)}{d r}+\operatorname{ser}=0 \\
& \frac{d(q r)}{d r}=\operatorname{sen} \quad o r \\
& q r=\frac{\operatorname{ser}}{}{ }^{2}+C_{1} \\
& q=\frac{\operatorname{ser} r}{2}+\frac{c_{1}}{2} .
\end{aligned}
$$

our $r=0, \quad q$ is fintue: $c_{1}=0$

$$
\begin{aligned}
& \quad q_{r}\left(\frac{f e r}{2}\right) \quad q r=-k \frac{d T}{d r} \\
& \therefore-k \frac{d T}{d r}=\frac{\text { se } r}{2} \\
& \therefore \quad T-T_{0}=\frac{S_{e} R 2}{4 k}\left(1-\left(\frac{r}{R}\right)^{2}\right.
\end{aligned}
$$

It is a parabilse the.
(95)
(i) Mast temprre

$$
T_{\text {max }}-T_{0}=\frac{S_{e} R^{2}}{4 k}
$$

(ii) Avg tem rise

$$
\langle T\rangle-T_{0}=\frac{\int_{0}^{2 \pi} \int_{0}^{R} R\left(I r r t-T_{0}\right) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta}=\frac{S_{e} R^{2}}{8 k}
$$

$$
=K T_{\text {max }}
$$

(iii) Heal oulflow an the sinface (forosteygh of wive)

$$
\begin{aligned}
\left.Q\right|_{r=R} & =2 \pi R L \cdot q_{v 2 R} \\
& =2 \pi R L \cdot \frac{\operatorname{seR}}{2}=s_{e} \cdot \underline{\pi R^{2} L}
\end{aligned}
$$

clearly heat imput. heot output ofr S.S Companinon with momenturn tramport

Geankoplial 217 4.10-Chcek
Theormal Condecemity pgos.
$k \propto(\sqrt{T}) \quad$ (Chopmon reqn)
$K \neq L(P)$ but onveng low pressume $k \rightarrow 0$
Th. ciond. of liquid. refer (Recol etap. 1972) Enengy is tranferred due to nop whllisin.
Reerg ef-d, \rightarrow mopporties of gases and haurds pranysitis

$$
k=a+b T \quad k \neq f(P)
$$

Kwotes $>$ Korgavicladu.
Th. cond of solid. varnes quitre widnely wetal have very high Th.C.
wood, noce epe bave vey low th. e. I wo mehomisus of H.T in sold
(1) Neatis condacsed by tree elechon (2) Heat is condethed by trampariond evergy.

Assignment (10.9.1 emanp le. 10.2 .2

Heat corduistion with a Nuetrear heeat Dource: covlam

Snu \rightarrow vilume rate of beat production at the cantre of the sphene, and b is a dinneursontian θ iv. constans.

- No flow henee $=(e=q$
racte or consldien a opphrene of thickenen $\underset{\sim}{\sim}$.
fleat Heat in $\quad q_{r} l_{r}, 4 \pi r^{2}$,
rake on heal $\left.\left.q_{r}^{R}\right|_{r+\Delta r} 4 \pi(r+r r)^{2} \simeq 4 \pi^{2} q_{r}^{(F)}\right|_{r+\Delta r}$
Oul

Rale of thernal enengy produced

$$
s_{n}+4 \pi r^{2} \text { or }
$$

by nuctean firsson
making a belainec

$$
\frac{d}{d r}\left(r^{2} q_{r}^{(\infty)}\right)=\operatorname{mr} r^{2} \Delta r \rightarrow 0
$$

(97)
2.5

$$
\frac{d}{d r}\left(r^{2} q_{r}^{(r)}\right)=\sin \left(14 b\left(\frac{r}{p^{(r)}}\right)^{2}\right] r^{2}
$$

for cladding

$$
\frac{d}{d r}\left(r^{2} q_{r}^{(c)}\right)=0
$$

on integralion
B.C.S

$$
\begin{aligned}
& q_{r}^{(f)}=\sin \left[\frac{r}{3}+\frac{b}{R^{(r)}}: \frac{r^{3}}{5}\right]+\frac{C^{(r)}}{r^{2}}
\end{aligned}
$$

as

$$
q_{r}^{(F)}=\sin 0\left(\frac{r}{3}+\frac{b}{R^{(F / 2}} \cdot \frac{r^{3}}{5}\right)
$$

contimuity of flusis
hubstontme fomives lave to fiv lenp desrrisation

$$
\begin{aligned}
\quad(F) \frac{d i(k)}{d r} & =\sin \left(\frac{r}{3}+\frac{b}{R^{(f)} 5^{r}} \frac{r 3}{5}\right) \\
-k^{c} \frac{d i(r)}{d r} & =\sin \left(\frac{1}{3}+\frac{b}{5}\right) \frac{R^{(k)^{3}}}{r^{2}}
\end{aligned}
$$

(98)

$$
\begin{aligned}
& \pi^{(f)}=-\frac{\sin 0}{k^{(F)}}\left(\frac{r^{2}}{6}+\frac{b}{R^{(r)^{2}} \cdot \frac{r 4}{20}}\right)+c_{3}^{(f)} \\
& T^{(c)}=\frac{\sin 0}{k^{(c)}}\left(\frac{1}{3}+\frac{b}{5}\right) \frac{R^{(f) 3}}{r}+c_{3}^{(c)}
\end{aligned}
$$

R.C.S

$$
\begin{array}{rlr}
\text { af } r & =R^{(F)} & T^{(F)}= \\
r & =R^{(C)} & T^{(C)}=
\end{array}
$$

contimuity of temp
where T_{0} is the known temperdina at the ousside of the clabding

$$
\begin{aligned}
T^{(R)}= & \left.\frac{\sin R^{(f)^{2}}}{6 k^{(f)}}\left[1-\left(\frac{r}{R^{(F)}}\right)^{2}\right]+\frac{3}{10} b\left(1-\left(\frac{r}{R^{*}}\right)^{4}\right]\right\} \\
& +\frac{\sin 0 R^{(F)^{2}}}{3 k^{(c)}}\left(1+\frac{3}{5} b\right)\left(1-\frac{R^{(\sigma)}}{R^{(C)}}\right) \\
T^{(C)}= & \frac{\sin R^{(f)}}{3 k^{(F)}}\left(1+\frac{3}{5} b\right)\left(\frac{R^{(F)}}{r}-\frac{R^{(F)}}{R^{(C)}}\right)
\end{aligned}
$$

Heat conduction with a visons theof Dounce; Flow of in coxpressible Newt anion flud Gwhiso

Considien the volume heat fource due to visuous dirsicpalion is $S v \rightarrow$ wot external corridier $b \ll R$ then $v_{z}=v_{b}\left(\frac{x}{b}\right)$ where

$$
v_{b}=\Omega R
$$

conodier a shell of thriciones Δx, wioth. W \& leng itr L
Energy balace intur x direation,

$$
\begin{aligned}
& \text { w. L.ex }\left.\right|_{x}-\left.w \cdot L \cdot e_{x}\right|_{x+\Delta x}=0 \\
& \frac{d e_{x}}{d x}=0 \quad 0 \quad x \text { compononvedivion } \\
& \text { tainporn te } \\
& e_{x}=\left(\frac{1}{2}+v^{2}+(H) \cdot v_{x}+\frac{(t, v)_{x}+}{q_{0}}=\right. \\
& \begin{aligned}
+7 y_{y} \\
+r y^{2} \\
2
\end{aligned}
\end{aligned}
$$

firstitermis gero as the re is no flow ${ }^{n}+x^{x} z^{2} z$ radial direction

$$
\begin{aligned}
& \because v_{x}=v_{y}=0 \\
& \begin{aligned}
\text { Txy } & v_{x}=V_{x y} v_{y} \\
& =0
\end{aligned} \\
& =0 \\
& \operatorname{onl}^{1} \cos _{x}, v_{z} \\
& \text { (60 (7) }
\end{aligned}
$$

$$
e_{x}=c_{1}
$$

we can wrive

$$
\begin{aligned}
& \quad\left(C_{\cdot} v_{2}+q k=c_{1}\right. \\
& -\mu \cdot \frac{d v_{z}}{d x} \cdot v_{z}+\left(-k \frac{d T}{d x}\right)=c_{1} \\
& -\mu v_{3} \frac{d v_{z}}{d x}-k \frac{d T}{d x}=c_{1} \\
& -\mu v_{b}\left(\frac{x}{b}\right) \cdot\left(\frac{v_{b}}{b}\right)-k \frac{d T}{d x}=c_{1} \\
& -k \frac{d T}{d x}-\mu x \cdot\left(\frac{v_{b}}{b}\right)^{2}=c_{1} \\
& \frac{d T}{d x}=-\frac{\mu x}{k}\left(\frac{v_{b}}{b}\right)^{2}-\frac{c_{1}}{k} \\
& T=-\frac{\mu}{k}\left(\frac{v_{b}}{b}\right)^{2} \cdot \frac{x_{b}}{2}-\frac{c_{1} x}{k}+c_{2}
\end{aligned}
$$

B.e. at $x=T=T_{0}$,

$$
\text { at } x=b T=T_{b}
$$

$$
\frac{T-T_{0}}{T_{b}-T_{0}}=\frac{1}{2} \frac{v_{b} V^{2}}{k\left(T_{b}-T_{0}\right)} \frac{x}{b}\left(1-\frac{x}{b}\right)+\frac{x}{b}
$$

(101)

Viscous bealing (Cv)
hear a dolition due to viscotiry

$$
\begin{aligned}
& \text { due to viscuciry roveof. } \\
& \frac{-(x \neq \text { wL })}{L \text { Force }} \text { t, vela wone }
\end{aligned}
$$

- 同隹 1 tor direction moneut um is z dirention.
\therefore Rote of energy a odintion/vilum.
(1)

$$
\begin{array}{ll}
-C_{x z} \frac{w \cdot l \cdot v_{b}}{w_{L \cdot b}}= & \mu \frac{d v_{z}}{d x} \cdot\left(\frac{v_{b}}{b}\right) \\
=\mu\left(\frac{v_{b}}{b}\right)^{2} & v_{z}=v_{b}\left(\frac{x}{b}\right) \\
S_{v}=\mu\left(\frac{v_{b}}{b}\right)^{2}
\end{array}
$$

Heor condulkon with a Cbemiral
Source

Fired bed asid flow sieactor.
Reatals enter at $z=-\infty$ and leave of $t=0$
consicter the flued is flowing rei a pling feow marnser with abiey uniform velocity $v_{0}=\frac{\omega}{\pi R^{2} \rho}$

$$
w=\frac{\text { Auf }}{\frac{4=v 0}{A \rightarrow x^{n M}}}
$$

$$
\rho_{1} \rho_{10} \vee v_{0} \neq f(\gamma) \uparrow f(z)
$$

Abo
recectior wall is insulated (Nokear lots)

$$
\begin{aligned}
\therefore & T \neq f(*) \\
& T=f(p t z)
\end{aligned}
$$

(1) Find the teup desmbation in the divection Conaider. S_{C} in the beat generation due to chemical seoction:

$$
\text { a } S=S C_{1} F(\theta) \quad \text { when } \theta=\frac{T-T_{0}}{T_{1}-T_{0}}
$$

$T \rightarrow$ liscol temp To \rightarrow enititicnofe
considier a srspog Δz thic inen. $\mathrm{SC}_{\mathrm{C}} \rightarrow$ courtans on mutiol cond fition
Bama eq"

$$
\begin{aligned}
& \left.\pi R^{2} e_{z}\right|_{z}-\left.n R^{2} e_{z}\right|_{z+\Delta z}+\pi R^{2} \cdot \Delta z \cdot S_{C}=0 \\
& \frac{d e_{z}}{d z}=S c \\
& e_{z}=\left(k_{2}+v_{z}^{2}+\rho M_{1}\right) v_{z}+\left(\hat{i}_{i 7} v_{z} q+q\right. \\
& =v_{2} \rho v_{y}^{2} \forall_{z}^{\gamma 0}+f\left[\hat{c_{p}}\right]\left(T-T_{0}\right) \cdot v_{z}+\mu \frac{d v_{T}}{d t} \cdot v_{z}^{0} \\
& f\left(p-p_{0}\right) v_{z}-\frac{v}{c h} \frac{d T}{}=0 \frac{\text { exins }}{7}
\end{aligned}
$$

AS
$V_{z} \neq f(z)$ aho pressuregoad. Canbe reglected

$$
\begin{align*}
& \therefore \rho \hat{C}_{p}\left(T-T_{0}\right) v_{z}+\operatorname{kent}+\frac{d t}{d t}=S_{C} \quad \text { for zone } 11 \\
& \rho \hat{C}_{p} v_{z} \frac{d T}{d t}=\operatorname{kerst} \frac{d^{2} T}{d z^{2}}+S_{C} \quad \text { zone } 1 T
\end{align*}
$$

for

$$
\begin{align*}
& z<0 \quad \rho \hat{C_{p}} v_{0} \frac{d T^{I}}{d z}=\operatorname{Keffz7}^{z} \frac{d^{2} T I}{d z^{2}} \tag{11}\\
& 0<t \in S, \quad \rho C_{p}^{\alpha} v_{0} \frac{d T}{d z}=\text { kerfa7 } \frac{d^{2} T z^{\prime \prime}}{d z^{2}}+G_{C}, F(\theta) \\
& z>L \quad P \hat{c}_{p} v_{0} \frac{d T^{+11}}{d z}=k e 8677 \frac{d^{2} T^{T 11}}{d z^{2}}
\end{align*}
$$

B.C.'
(1) at $z=-\infty \quad T^{\prime \prime}=T_{1}$
(2) as $z=0 \quad T^{\text {F }}=T^{\text {III }}$
(3) $z=0$ kef1. $\cdot \frac{d T^{2}}{d t}=k \cos \frac{d T T}{d t}$
(4) at $z=1$
$T^{\pi}=\tau^{\pi}$
(5) $z=i$ ken $\frac{d I}{d 7}=k_{2} \frac{\phi T I I}{d z}$
(4) $z=D \quad T^{I I}=$ finire

For pratied interest keft.87 way be sinall compacalt converin tem ber

$$
\begin{aligned}
& \text { be suall kefr }=0 \text {, } P^{\prime}=\frac{R P_{r}}{R P_{r}} \text { (ensures plogglow) } \\
& \text { for large } P^{2}
\end{aligned}
$$

conside ${ }^{t} / \mathrm{L}$,

$N=\frac{S_{C_{1}} L}{P \hat{C_{D}} V_{0}\left(T,-T_{0}\right)}$
$>$ dimernmiten heat gertion
(104) then fromegh (1) (2) 8 (3)

Zome I

$$
\frac{m i n}{(z<0)}
$$

$$
\circ<z<L
$$

Zone IT

$$
\circ<z<l
$$

$$
\frac{d \theta^{\prime \prime}}{d z}=N f(\theta)
$$

Zonv IT

$$
\begin{aligned}
& 6 d(t / L) \\
& \frac{d \theta}{d z}=0
\end{aligned}
$$

$$
\frac{d \theta^{\sqrt{\pi}}}{d z}=0
$$

we need Three Bic No NWe above equs

$$
\begin{array}{rlr}
z=-\infty & \theta^{I}=1 \\
z=0 & \theta^{I}=\theta^{I I} \\
z=1 & \theta^{I}=\theta^{I I}
\end{array}
$$

SH"

$$
\begin{aligned}
& \theta^{I}=1 \quad \text { Zonevi } \\
& \int_{\theta^{2}}^{\theta_{.1}^{\prime} \cdot 1}=N(\theta)\left(\frac{1}{2}\right) \mathrm{Nz} \text { zone II } \\
& \theta^{\text {III }}=\left.\theta^{\text {IT }}\right|_{Z=1} \quad \text { Zone } \frac{\sqrt{1 I}}{4} \\
& B=\frac{Z}{L} \Rightarrow \frac{L}{L}=1
\end{aligned}
$$

(105)

As an appodxiualion

$$
F(\theta)=\theta \quad\left\{\begin{array}{l}
\text { for small charfes } \\
\text { in temperabhres } \\
\text { int the recesimetre }
\end{array}\right.
$$

inf the reactim etre is ensensitivi to concentralion)
Thus ine bowe

Heal conduction wis a corling fir werll find cooling finceficieny

Tw
A Sinper coolvytio wits

BLLE, and

$$
B<\angle W
$$

1. $T=f(x, y, z)$ warci- amperals
2. heat-is alro lost from $2 B \omega$
3. $h=f$ (prsition)
$T a \rightarrow$ armbent toup.
model

$$
T=f(z)
$$

No beat loss fromita edyes

$$
q_{z}=\frac{h}{c}\left(T-T_{a}\right)
$$

constants 8 $r=f(z)$

Enexgy bolance.

$$
\begin{aligned}
& \text { nexgy bolance. } \\
& 2 B w q_{z} / z-2 \beta w q_{z} /_{z+\Delta z}-k(2 w \Delta z)\left(T-T_{a}\right)=0 \\
& \text { an tatein the hinit as }
\end{aligned}
$$

pivision by $2 B W \triangle z$ and tateing the hmir as Δt approvehes jew gives

$$
-\frac{d q_{3}}{d t}=\frac{h}{B}(T-T a)
$$

$$
\begin{aligned}
& -\left(q_{z}=-\frac{k d r}{d 3}\right) \text { in which } k \text { is the themet } \\
& \text { conswetwinty of the enetal. }
\end{aligned}
$$

$$
\frac{d^{2} T}{d 3^{n}}=\frac{h}{k B}(T-T)
$$

B.C.I at $Z=0, \quad T=T 0^{*}$

$$
\text { B.C. } 2 \text { at } 3=L \quad \frac{d r}{d z}=0
$$

Hhetal $\theta=\frac{T-T_{a}}{T_{w}-T_{a}}$
(Leta) $\angle \zeta=\frac{z}{L}$
$N^{2}=\frac{h L^{2}}{l B}$ dementrosters HiPC.
$\frac{d^{2} \theta}{d \zeta^{2}}=\lambda^{2} \theta$ with $\theta / 3=0=1$ ard
$=0$

$$
\left.\frac{d \theta}{d \zeta}\right|_{z=1}=0
$$

The quanitity x^{2} maybe $N^{2}=\left(\frac{h}{k}\right) \cdot\left(\frac{R}{B}\right)$

$$
=B i\left(\frac{l}{3}\right)
$$

SOVh

$$
\begin{aligned}
& \theta=\cos N 3-(\tan h N) \sin N \\
& \theta=\frac{\cosh N(1-\xi)}{\cosh N} \\
& \eta=\frac{\text { actual rase of heat boes from the fin }}{\text { rate of heot loss froman isthernd fom }}
\end{aligned}
$$

(08)

$$
\begin{aligned}
\eta & =\frac{\int_{0}^{w} \int_{0}^{L} h\left(T-T_{a}\right) d \xi d y}{\int_{0}^{w} \int_{0}^{L} h\left(T_{w}-T_{a}\right) d \xi d y} \\
& =\frac{\int_{0}^{1} \theta d \zeta}{\int_{0}^{1} d \xi} \\
\eta & =\frac{1}{\cosh N}\left(-\left.\frac{1}{N} \operatorname{sinhN}(r \xi)\right|_{0} ^{\prime}\right. \\
& =\frac{\tan h \omega}{N}
\end{aligned}
$$

in which $N \rightarrow$ dimensiondes quoublity

Forced Conveetim
consute. forced convestion in a arcila tube

As the evengy inbeng tranportred in the I ano r divection cortides a ring of thind. elervent- of theisien or \& login Δz.
(*) refer to shelt 1110
Evaregy bolarce:
Total evergy en of $r=$ ertr. $2 \pi r \cdot \Delta z$

$$
\begin{aligned}
\text { en of } r & =\left.e_{r}\right|_{r} \cdot \\
\text { out af } r+\Delta r & =\text { errar }\left.\right|_{r+\Delta r} \cdot 2 A(r+\Delta r) \cdot \Delta z \\
& =2 \text { rr }\left.\Delta z \cdot e \cdot\right|_{r+\Delta r}
\end{aligned}
$$

Total eneyg in as $t=e_{z} \|_{z} \cdot 2 \pi r \cdot \Delta r$

$$
\text { ous at ztom }=\left.e_{7}\right|_{z+\Delta x} \cdot \text { 2rtr.ar }
$$

$$
\begin{aligned}
\text { wre done on thid by gruity }= & \frac{\rho \cdot g \cdot 2 \text { or. } \Delta r \cdot \Delta z \cdot v_{z}}{d} \text { foree } \cdot \frac{\mathrm{m}}{\mathrm{se}} \\
& =\text { Erem } / \mathrm{s} .
\end{aligned}
$$

In firced corwection problean vecouloq prope ince find ornd first and then lt h wed to obtaim the temperalure profite.

* Here counder the velocity profecte is fally developed

$$
\begin{aligned}
\therefore v_{z} & =\left(\frac{\rho_{0}-\rho_{L}}{4 \mu L}\right] R^{2}\left[1-\left(\frac{r}{R}\right)^{2}\right] \\
& =V_{\max }\left[1-\left(\frac{r}{R}\right)^{2}\right]
\end{aligned}
$$

Energy bolance

$$
\frac{\left.(r e r)\right|_{r}-\left.(r e r)\right|_{r+\Delta x}}{\Delta r}+r \cdot \frac{\left.e_{z}\right|_{z}-\left.e_{z}\right|_{z+\Delta 7}}{\Delta z}+v_{z} \partial_{z}^{r}=0
$$

or as $\Delta r \rightarrow 0, \Delta z \rightarrow 0$

$$
-\frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot e_{r}\right)-\frac{\partial e_{z}}{\partial \tau}+\rho v_{\tau} \partial_{z}=0
$$

$$
e_{r}=q_{r}+\left(v_{r}+v^{2}+f \hat{r}\right) y_{r}^{0}+\left(\tau_{r}+\vec{v}_{r}^{0}+\tau_{r o v} v_{0}^{0}+\tau_{r r_{t}}^{v_{t}}\right)
$$

$$
=-k \frac{\partial T}{\partial r}-\mu \frac{\partial v_{z}}{\partial r} \cdot v_{q}
$$

$$
v_{z} T_{r z}=-\mu\left(\frac{\partial v_{z}}{\partial r}\right) \cdot v_{z}
$$

$e_{x}=q_{1}+\left(\frac{1}{2} r v^{2}+e \hat{H}\right) v_{z}+\left(T_{r y} \nu_{v}^{0}+\tau_{z} v_{0}^{v}+\tau_{z} y^{0} v_{z}^{0}\right)$

$$
=-k \frac{\partial r}{\partial z}+\left(y+v^{2}+p \dot{n}^{2}\right) v z
$$

$$
\begin{aligned}
& \dot{H}=f(7)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=c+1+\left[\frac{p}{2 \rho}\right)_{q}+v\left(\frac{\partial p}{3 p}\right)_{q}\right] d p
\end{aligned}
$$

$$
=\hat{C_{p}} d q+\left[T\left(-\frac{\partial \dot{V}}{\partial \tau}\right)_{p}+\dot{V}\right] d p
$$

Forgeas combines itact gos law fornows

$$
\begin{aligned}
& P v=R i \\
& \left(\frac{\partial v}{\partial T}\right)=\frac{R}{P} \Rightarrow \frac{R^{r}}{P}=v
\end{aligned}
$$

$$
\hat{d n}=\hat{C_{p}} d T
$$

phicishount
is dearity.

$$
\hat{H}-\hat{H}^{\circ}=\hat{\hat{C}_{f}}\left(T-T^{0}\right)
$$

Firt texum wiuremais

$$
\hat{H}-\hat{H}^{0}=\hat{C_{p}}\left(T-T^{0}\right)+\int_{p^{0}}^{p}\left[\hat{V}-T\left(\frac{\partial r}{\partial T}\right)_{p}\right] d p
$$

Fhud is imompressibste wears f-is constant

$$
\rho=\frac{1}{\hat{v}} \text { so } \hat{v}=\cos n
$$

$$
\hat{H}-\hat{H}^{0}=\hat{C_{p}}\left(T-T^{0}\right)+\hat{\int_{p}}\left[\hat{V}-T\left(\frac{\partial \hat{V}}{\partial p}\right)_{p}^{0}\right] d p
$$

$$
=\hat{C_{p}}\left(T-T^{0}\right)+\hat{V}\left(p-p^{0}\right)
$$

$$
\left.=r c_{p}\left(T-T^{0}\right)+\frac{\left(P-p^{0}\right.}{\rho}\right)
$$

Let $\hat{H}^{0} \Rightarrow 0$ for reference

$$
\therefore \hat{H}=\hat{C_{p}}\left(T-T^{0}\right)+\left(\frac{P-P^{0}}{\rho}\right)
$$

$$
e_{z}=-k \frac{\partial}{\partial z}+\left(\hat{\rho} v^{2}+\rho \hat{v_{p}}\left(T-T^{0}\right)+\left(p-p^{0}\right)\right) v_{z}
$$

Substituting the teams in the shelt balance ean.

$$
\begin{aligned}
& \text { Ghit fam } \\
& \text { nilibe beonst. \& } v_{z} \neq f(z) \quad \forall z \\
& \text { seno as fcon }
\end{aligned}
$$

Hence

$$
k \frac{\partial^{2} T}{\partial r^{2}}+\frac{k}{r} \frac{\partial T}{\partial r}+\mu \frac{v_{z}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\mu\left(\frac{\partial r}{\partial r}\right)^{2}-v_{z} f \hat{c_{p}} \frac{\partial T}{\partial z}
$$

$$
-v_{z} \frac{\partial p}{\partial z}+\rho v_{z} g_{z}=0
$$

$$
k \frac{\partial^{2} r}{\partial r^{2}}+\frac{k}{r} \frac{\partial T}{\partial r}-v_{z} \rho \hat{\rho} \frac{\partial T}{\partial z}+\left(\frac{\mu}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}-\frac{\partial p}{\partial z}+\rho g_{z}\right) v_{z}\right)=0
$$

z-comp of relocity in N-s eqn and will be $=0$ for thincase Cheek N-S oqn.

$$
\frac{k}{r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)=v_{z} s \hat{c} \frac{\partial T}{\partial z}
$$

Deerred expression. Now v_{z} is a for of r as

$$
v_{z}=v_{z \max }\left[1-\left(\frac{r}{R}\right)^{2}\right]
$$

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial}{\partial r}\left[k r \frac{\partial T}{\partial r}+\mu v_{z} \cdot r \frac{\partial v_{z}}{\partial r}\right]-\rho \hat{p}_{p} \frac{\partial T}{\partial z} \cdot v_{z}-v_{z} \frac{d p}{d z}+\rho v_{z} g_{z}=0 \\
& +\rho v_{z} g_{z}=0
\end{aligned}
$$

$$
\begin{aligned}
& -1 / r\left(\frac{\partial}{\partial r}\left(r e_{r}\right)\right)-\frac{\partial e_{z}}{\partial z}+v_{z} g_{z}=0 \\
& -\frac{1}{r} \frac{\partial}{\partial r}\left(r\left[-k \frac{\partial T}{\partial r}-\mu \frac{\partial V_{z}}{\partial r} \cdot V_{z}\right]\right) \\
& -\frac{\partial}{\partial z}\left[-k \frac{\partial r^{\prime}}{\partial z}+\frac{1}{2} \int v_{z}^{2} v_{z}+\rho \hat{p}\left(T-T^{0}\right) v_{z}+\left(p-p^{0} v_{z}\right]\right. \\
& \binom{\text { condurtion in } z}{\text { dreation is tmall }} \quad \begin{array}{l}
\text { yo } \\
\text { difzo } \\
\text { this term }
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
f \hat{p} V_{z \text { inax }}\left[1-\left(\frac{\gamma}{R}\right)^{2}\right] \frac{\partial T}{\partial z}=\frac{k}{\gamma}\left[\frac{\partial}{\partial r}\left(\gamma \cdot \frac{\partial T}{\partial r}\right)\right] \tag{2}
\end{equation*}
$$

To solve thi eqn an alternatemethod is given in Arinoms heat transfur pp-259 thinis same equ cau be reoched using eqhof change for Boundary conditions
(1) at $r=0 ; \frac{d T}{d r}=0$ symmetry $\forall z$

$$
T=\text { finite }
$$

(2) at $r=R \quad-k \frac{\partial T}{\partial r}=q_{0}$ unitorm he at fluse as wall
\therefore contimuity of heat flus.
(3) at $z=0 \quad T=T_{1} \quad \forall \gamma$
soth^{n} of abure $e g^{n}$ involves the use of fimensionters parameters

The choice for dimention fext texyp in from (2) G(3) B.C. The eqn then Becomes $\left(1-\xi^{2}\right) \frac{\partial \theta}{\partial \zeta}=\frac{1}{\xi} \frac{\partial}{\partial \xi}\left(\xi \frac{\partial \theta}{\partial \xi}\right)$ with BC. at $\xi=0 ; \circlearrowleft=$ fruite; at $\xi=1, \frac{\partial \theta}{\partial \xi}=1 ;$ at $\xi=0, \theta=0$
An asyomptoric socution for the above egn coculd be obtaimed for lange 3 . As for lange 3 the temperalin. profite as a function of will wot unadergofinther change with enereasing ζ. Thus for lange ζ

$$
\begin{equation*}
\text { (1) (}), 3)=\cos ^{2} \zeta+\psi(\xi) \tag{4}
\end{equation*}
$$

Where cols a constant to be detennmed.
However thineq (i)does not sothofy B.C. 3 bur Satiopies $B C . L$ and $B \cdot C .2$ Hence $B C .3$ heeds to be changed. [Aote: ef youpul $\bar{\xi}=0$, eis eqn $4 \theta \neq 0$]

Figure how the temper, $T(r, z)$ would change when the tube wall is heating using a coil wrapped around the tube unnformelly

BC. 4

$$
2 \pi R Z q_{0}=\int_{0}^{2 \pi} \int_{0}^{R} \rho \hat{p}_{p}\left(T-T_{1}\right) \psi r d r d \theta
$$ ins or ernewnoxlen form

$$
\begin{equation*}
\zeta=\int_{0}^{1} \theta(\xi, \xi)\left(1-\xi^{2}\right) \xi d \xi^{2} \tag{5}
\end{equation*}
$$

ie.
Energy duppliedovera distance $\frac{S}{S} \stackrel{\text { the }}{=}$ the (energy leasing ar 5evengyenten ry of $S=0$)
Substituting eq (4) in to

$$
\frac{1}{\xi} \frac{d}{d \xi^{n}}\left(\xi \frac{d \psi}{d \xi_{1}}\right)=c_{0}\left(1-\xi^{2}\right)
$$

Which gives on twice integration.

$$
\begin{aligned}
\theta(\xi, \xi)= & c_{0} \zeta+c_{0}\left(\frac{\xi^{2}}{4}-\frac{\xi^{4}}{16}\right) \\
& +c_{1} \ln \xi+c_{2}
\end{aligned}
$$

Using B.C.S (1, (2) and (4)
the constewns are

$$
\begin{aligned}
& C_{1}=0 \text { from B.C.I } \\
& c_{0}=4 \text {-ur } B \cdot C \cdot 2 \\
& c_{2}=-7 / 24
\end{aligned}
$$

Thess

$$
\theta=4 \zeta+\tau_{6}^{2}-\frac{1}{4} \xi^{4}-7 / 24
$$

Validitor longe $\Sigma: \underline{5} \rightarrow \infty$
Frith make aw g temp.

$$
\begin{aligned}
& \text { Frith make arg temp. }\langle T\rangle=\frac{\int_{0}^{2 \pi} \int_{0}^{R} T(r, z) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{R} r d r d \theta}=T_{1}+\left(L \xi+\frac{z}{24}\right) \frac{q_{0} R}{k} \\
& \text { Bulk arg.temp } \\
& \text { musing contemp. } T_{b}=\frac{\left\langle v_{z} T\right\rangle}{\left\langle v_{z}\right\rangle}=\frac{\left.\int_{0}^{2 \pi} \int_{0}^{R} v_{z}(r) T / r, z\right) r d r d \theta}{\int_{0}^{2 \pi} \int_{0}^{R} v_{z}(r) r d r d \theta}
\end{aligned}
$$

(115)

$$
T_{b}=T_{1}+45 \frac{T_{0} R}{k}
$$

Local Heal Transfer Driving force, Th -Tb

$$
\begin{aligned}
& \text { (a) } r=R_{1}, T=T W \\
& \therefore \frac{T-T_{1}}{\frac{q_{0} R}{K}}=45+\left(\frac{r}{R}\right)^{2}-\frac{1}{L_{1}}\left(\frac{r}{R}\right)^{4}-\frac{7}{24} \\
& T_{\omega}-\underbrace{T_{1}=\frac{q_{0} R}{k}}_{\rightarrow T_{b}}+\frac{q_{0} R}{k}\left[1-\frac{1}{u}-\frac{7}{2 u}\right] \\
& T_{w}-T_{b}=\frac{q_{0} R}{k}\left[\frac{11}{24}\right]=F(\gamma) \text { orly. } \\
& \frac{q_{0} \text { or }}{K\left(T w-T_{b}\right)} \cdot R=\frac{24}{11} \Rightarrow \frac{q_{0}}{K\left(T w-T_{n}\right)} \cdot D=\frac{48}{11} \\
& \therefore q_{0}=h\left(T_{w}-T_{b}\right) \\
& \frac{h D}{R}=\frac{48}{11} \Rightarrow \text { limiting value of Nusselt }_{\text {Number }}
\end{aligned}
$$

The russet number depends upon Re \& P_{r} in case of forced convection.
Refer to Page no. 235-247
Geampoo.
Heat Transfer - (i) fourier's Law
(ii) Notes on 7 th Conductivity
(iii) Derivations. Parallel wall Derivations. cylundric of walls
composite
well and Numerical based on them..

The equation of change for Non isothermal system.
Law of consecration of energy. Which is an extension of first law of thermodynamics will be applied over a differential volume to bhttain the eeversy equation.
First low of the rmodynamsis

$$
\Delta U=Q+W
$$

Qinnurves entering and leaving $K \cdot E \& \mathbb{I} E$.
$W \longrightarrow\left\{\begin{array}{l}\text { work done due to con. F co } \\ \text { Body forces live, gravity } \\ \text { surface forces Such ar prim }\end{array}\right.$
Thus the creneral expression for the energy conservation thus becomes

$$
\begin{aligned}
& \text { Rate of increase }= \text { Net rate of } \\
& \text { of }=E \cdot E \cdot E . E . \\
& K \cdot E \cdot G I \cdot E . \\
& \text { addition } \\
& \text { or cor. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { L.H.S }=\Delta x \cdot \Delta y \cdot \Delta z \cdot \frac{\partial}{\partial t}\left(\tilde{\Sigma}+v^{2}+f \hat{u}\right) \\
& \hat{u} \rightarrow \text { EME./VAT } \\
& \hat{u} \rightarrow \frac{\text { Energy }}{\text { mars }}
\end{aligned}
$$

$$
\begin{aligned}
& z \rho v^{2}=\frac{1 / \rho\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)}{\underset{L}{ }{ }^{2} \cdot E \cdot \text { vt. }} \\
& \text { Mathematically } \\
& \text { The first three terms on the present in } e \text { ide. combined }
\end{aligned}
$$

Net rate of heat addition by molecular tromps corduetion rate of work done rate of work dione on system by molecular mechanism ie. by Stresses (P, Y etc.) fores e.g.bygranity
R. His of the eqn are present in e vector energy flux vector.
Energy eneteung the volume element $\Delta x \Delta y \Delta z$
(117)

$$
\begin{align*}
& \text { 7) } \begin{array}{l}
\Delta y \Delta z\left(\left.e_{x}\right|_{x}-\left.e_{x}\right|_{x}+\Delta x\right)+\Delta z \Delta x\left(\left.e_{y}\right|_{y}-\left.e_{y}\right|_{y}+\Delta y\right) \\
\\
+\Delta x \Delta y\left(\left.e_{z}\right|_{z}-e_{z}(z+\Delta z)\right.
\end{array} \text { (2) }
\end{align*}
$$

wone dore on flend due to granity force (extemelforce)

$$
\begin{equation*}
=\rho \Delta x \Delta y \Delta z(g \cdot v)=\rho \Delta x \Delta y \Delta z\left(g_{x} v_{x}+g_{y} v_{y}+g_{z} v_{z}\right) \tag{3}
\end{equation*}
$$

from (1), (2) 8 (3)

$$
\begin{aligned}
& \text { from (1). (2) } \\
& \frac{\partial}{\partial t}\left(k \rho v^{2}+\rho \hat{u}\right)=-\left(\frac{\partial e_{x}}{\partial x}+\frac{\partial e_{y}}{\partial y}+\frac{\partial e_{z}}{\partial z}\right)+\rho\left(g_{x} v_{x}+g_{y} v_{y}+g_{z} v_{z}\right) \\
\Rightarrow & \frac{\partial}{\partial t}\left(乡 \rho v^{2}+\rho \hat{u}\right)=-(\nabla \cdot e)+\rho(v \cdot g)
\end{aligned}
$$

Extending vectore

$$
\begin{aligned}
& e=(そ e n d i n g \text { vectore } \\
& e=p \hat{u}) v+q+p v+[\tau \cdot v]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\xi \rho v^{2}+\rho \hat{u}\right)= & \left(\nabla \cdot\left(\hbar \rho v^{2}+\rho \hat{u}\right) v\right)-(\nabla \cdot q)-(\nabla \cdot p v) \\
& -(\nabla \cdot[\tau \cdot v])+\rho(v \cdot g)
\end{aligned}
$$

Terms
L. H. S.

RH.S.
(i)
(2) \qquad
(3)
(4) \qquad
(5)

Descuption
rate of Inerease of $K \cdot E \cdot G I \cdot E \cdot$ perumirvol. per rot.
conductive transport (Motecular
Transport)
wonk done by pressur force/vol.
whend done by viscous force. - Chas same wun r as p

Abure eqn doesn' ineludie nueteat, radioactive. electromagnatic or chemical forms of enengy.

Special formsof En, org eqn.
The energy eqn is

$$
\begin{aligned}
& \text { The energy eqn is } \\
& \begin{aligned}
\frac{\partial}{\partial t}\left(\frac{1}{2} \rho v^{2}+\rho \hat{u}\right)= & -\left(\nabla \cdot\left(\frac{1}{2} f 0^{2}+\rho \hat{u}\right) \bar{v}\right)-(\nabla \cdot \bar{q})-(\nabla \cdot p \vec{v}) \\
& -(\nabla \cdot(\bar{r} \cdot \bar{v})+\rho(\bar{y}) \cdot \bar{g})
\end{aligned}
\end{aligned}
$$

from this we Subtract the Mrechavicol emesy eq" ${ }^{\text {n }}$

$$
\frac{\partial}{\partial t}(f \hat{u})=-(\bar{\nabla} \cdot \rho \hat{v}) \bar{v}-(\nabla \cdot \bar{q})+p(-\bar{\nabla} \cdot \bar{v})
$$

$$
\begin{aligned}
& \hat{U}=\hat{H}-P V=\hat{H}-(P / \rho)+\frac{\tau}{\tau}+\frac{\partial x^{2} z}{\partial x}+\frac{\partial v^{2}}{\partial x}+\frac{\partial \partial^{2} z}{\partial y} \\
& \frac{D \hat{U}}{D t}=\frac{D \hat{H}}{D t}-\frac{1}{\rho} \frac{D P}{D t} \\
& \begin{array}{l}
\rho \frac{D H}{D t}
\end{array}=-(\bar{\nabla} \cdot \bar{q})-(\bar{\tau}: \bar{\nabla} \bar{v})+\frac{D P}{D t}-\text { (1) } \\
& \overline{P \frac{D H}{D t}}=\rho \hat{P} \frac{D T}{D t}+\rho\left[\hat{v}-T\left(\frac{\partial \hat{v}}{\partial T} p_{p}\right] \frac{D P}{D t} \underset{\int D 8-7}{? \rightarrow \text { fornean }}\right. \\
& =\rho \hat{\varphi} \frac{D T}{D t}+\rho\left[\frac{1}{\rho}-T\left(\frac{\partial \mathcal{\rho}}{\partial T}\right)_{P}\right] \frac{D P}{D t},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\frac{1}{2} \rho \hat{v}^{2}\right)=-\left(\nabla \cdot \frac{1}{2} \rho+\sqrt{v} v\right)-(\nabla \cdot p \vec{v})-p(-\bar{\nabla} \cdot \vec{v}) \\
& -(\bar{\nabla} \cdot[\pi / \vec{v})-(-\bar{व}: \bar{\nabla} \bar{v})+\rho(\bar{v} \cdot \bar{g})
\end{aligned}
$$

$$
\begin{equation*}
\rho \frac{D \hat{H}}{D T}=\rho \hat{C P} \frac{D T}{D t}+\left[1+\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P}\right] \frac{D P}{D t} \tag{2}
\end{equation*}
$$

Substituting this value into en (1) we have

$$
\rho \hat{c} \frac{D T}{D t}=-(\bar{\nabla}, \bar{q})-(\bar{\tau}: \bar{\nabla} \bar{v})-\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P} \frac{D P}{D t}
$$

ran of chang for temperature
Refer to Appendix B. 8 Bred when fourneis low is used $-(\nabla \cdot q)=(\nabla \cdot K \nabla T)$

$$
\text { if is constant }=\left(k \cdot \nabla^{2} T\right)
$$

(i) for ideal gas $\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{p}=-1$ So,

$$
f \hat{c p} \frac{D T}{D t}=k \nabla^{2} T+\frac{D P}{D t}
$$

(ii) for thad flowing in a constant pressure system

$$
\begin{aligned}
& \frac{D P}{D t}=0 \therefore \\
& \rho C_{P} \frac{D T}{D t}=k \nabla^{2} T
\end{aligned}
$$

(iii) for fauve with constans density

$$
\begin{aligned}
& (\partial \ln \rho / \partial \ln T)_{P}=0 \\
& \therefore \rho \hat{C} \frac{D T}{D t}=k \nabla^{2} T
\end{aligned}
$$

(iv) For astatimary sold, v is zero hence

$$
\rho \hat{c_{p}} \frac{\partial T}{\partial t}=K \nabla^{2} T \rightarrow \text { Fourier's eqn }
$$

Relevant dimpursinten groups

$$
E C=R r / p^{r}
$$

Refor to Table $11.5-3$

$$
\begin{aligned}
& \text { Re, } \left.=\frac{\left[l o v_{0} l\right.}{\mu}\right]=\text { Rregus mon mume } \\
& P_{r}=\left[\frac{c_{p} \mu}{k}\right]=\frac{\nu}{\alpha}=\text { Pravell nu unbe } \\
& \text { Gr }=\left[g \beta\left(T_{1}-\tau_{0}\right) \operatorname{lo}^{3} / \nu^{2}\right]=\text { Craseof Number } \\
& \text { Bre }-\left[\mu v_{0}^{?} / k\left(T_{1}-T_{0}\right)\right]=\text { sann lowan Number } \\
& \nabla e=R e p_{r} \\
& R a=\text { Gr Pr } \\
& \text { = Pealer number } \\
& =\text { Raylaiga Numba } \\
& =\text { Eekent Nurbe }
\end{aligned}
$$

freeconvection Priblem:

eve. Flow pations b/w hivo planallel plates maintand at defferens temperdince.
Fluid 7 densty f and oislosity p is located b/w the plotes
It is assumod that temp syfrerence is sufficienlly Sunals.

* Syytem isclosed of the lop a bittom.

Dae to the tomp digf. the fhend an hot end ruses and that on cord end descends ant the velouty propile as shown develops

* The plaser are assumed to be very toll so thal end effects can be n-gleesed.
* Temperdeira is a fri of ' y ' alone.

Select a shell a thicioness of Δy ti marece eveys balanee.
in ' y ' direction there is no convection and beos trausfor is only by conduction (negleect the viswons bealing torme)

$$
\therefore \quad-\frac{d q_{y}}{d y}=0 \quad \text { or } \quad k \frac{d^{2} T}{d y_{y}}=0
$$

at $\quad y=-B, \quad T=T_{2}, \quad \therefore \quad y=+B \quad T=T$,

$$
\therefore \quad \Gamma=\bar{T}-\frac{1}{2} \Delta T^{Y} / B \quad \begin{aligned}
& \bar{T}=Y_{1}\left(T_{1}+T_{2}\right) \\
& \Delta T=T_{2}-T_{1}
\end{aligned}
$$

Now let) find velout, disturtion
mate theth babuce oun the to Dy llabs
$\phi_{=1}, \phi_{21} \phi_{27}$

$$
\begin{aligned}
& \phi_{q} q: \rho v_{\tau}^{2}+p+\left[\gamma \mu \frac{\partial v}{\partial \nu}\right] \\
& \text { on making balance }
\end{aligned}
$$

$$
\mu \frac{d^{2} v_{z}}{d y^{2}}=\frac{d_{1}}{d z}+\rho g
$$

$\mu \rightarrow$ assumed constant
$1=f(T) \cdots$ aratunal convection
As the ΔT is small charge in ρ wilibe
smale bence ρ can be expantel abous
F using Toycorstenies

$$
\begin{aligned}
& \therefore \rho=\rho /_{T=\bar{T}}+\left.\frac{d \rho}{d T}\right|_{T=T}(T-\bar{T})+\cdots \\
& \text { Boupprivin }>\rho=\bar{\rho} \pm \bar{\rho} \bar{\beta}(T-\bar{T}) \\
& \beta \rightarrow \text { Shureeypanson cocti: } \\
& \begin{aligned}
\beta & =\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \\
& =\frac{1}{\left(c_{p}\right)}\left(\frac{\partial\left(r_{p}\right)}{\partial T}\right)_{p} \\
& =-1 / \rho\left(\frac{\partial \rho}{\partial T}\right)_{p}
\end{aligned} \\
& \begin{aligned}
\beta & =\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \\
& =\frac{1}{(1 / p}\left(\frac{\partial\left(\left(_{p}\right)\right.}{\partial T}\right)_{p} \\
& =-1 / p\left(\frac{\partial \rho}{\partial T}\right)_{p}
\end{aligned} \\
& \begin{array}{ll}
& \left.\mu \frac{d^{2} v_{t}}{d y^{2}}=\frac{d p}{d q}+[\bar{\rho}-\bar{p} \bar{\beta}(T-T)]\right] g
\end{array} \\
& =-1 / \rho\left(\frac{\partial \rho}{\partial T}\right)_{p}
\end{aligned}
$$

$$
\begin{aligned}
& d_{4 p}=p v_{y} v_{z}+p / 0+\left[-\mu\left(\frac{\partial v_{q}}{\partial q}+\frac{\partial v_{q}}{\partial p}\right)\right]=
\end{aligned}
$$

Shat the Tempeaplin ctarge is Ancell thence the somity pravge will be snidl Assume thet of $\bar{T}=\left(\varepsilon,\left(T_{2}+a_{1}\right)\right.$

$$
\rho=\bar{\rho} 0
$$

Using 7 ouglof sunes erplansion of can be then erponved quow T ap

$$
\begin{align*}
& \rho=P\left|A \frac{d P}{d T}\right|_{T=\bar{T}}(T-\not \subset) \\
& \quad=\bar{e}-\bar{P} \bar{\beta}(T-\bar{T}) \tag{,}
\end{align*}
$$

$\bar{P}, 4 \bar{P}$ are the Densiry and the Notume exp aursion fefticient at π β is sefine of ∞

$$
\begin{aligned}
& \text { is defive d } \\
& \beta=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{p}=\frac{1}{\left(y_{p}\right)}\left(\frac{\partial l_{p}}{\partial T}\right)_{p} \\
& F=-\frac{1}{p}\left(\frac{\partial e}{\partial T}\right)_{p}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \mu \frac{d^{2} v_{3}}{d y^{2}}=\frac{d p}{d \xi}+(\bar{p}-\bar{p} \bar{\beta}(T-\bar{T}) \cdot g \\
& \mu \frac{d^{2} v_{7}}{d y^{2}}=\left(\frac{d p}{d y}+\rho g\right)-\overline{\rho g} \bar{\beta}(T-\bar{T}) \\
& \text { viscons force }
\end{aligned}
$$

Buar $T=T-\frac{1}{\Sigma} \Delta T \quad$ //B \therefore

$$
\begin{aligned}
\mu \frac{d^{2} v_{3}}{d y^{2}} & =\left(\frac{d p}{d \gamma}+\bar{\rho} g\right)-\bar{\rho} g \bar{\beta}(\bar{T}-\zeta \Delta T / B-\bar{T}) \\
& =\left(\frac{d p}{d z}+\dot{\rho} g\right)+\bar{\rho} g \bar{\beta} \Delta T \frac{\gamma}{B}(/ \beta)
\end{aligned}
$$

B.C.S
(1) at $y=-3, \quad v_{3}=0$,
(2) at $y=+3 \quad v_{3}=0$

$$
\begin{aligned}
& \mu \frac{d v_{3}}{d y}=\left(\frac{d p}{d z}+\bar{\rho} g\right) \cdot y+\frac{1}{2} \dot{\rho} g \bar{\beta}\left(\Delta T \cdot y_{1 B}^{2}\right)+c_{1} \\
& \mu v_{3}=\left(\frac{d p}{d 3}+\bar{\rho} g\right) \cdot \frac{y^{2}}{2}+\frac{1}{12} \bar{f} \cdot g \bar{\rho}\left(\Delta T \frac{y^{3}}{B}\right)+c_{1} y+c_{2}
\end{aligned}
$$

from (1) B.C.

$$
\begin{align*}
& 0=\left(\frac{d P}{d B}+\bar{\rho} g\right) \cdot \frac{B^{2}}{2}-\frac{1}{12} \bar{\rho} \dot{g} \bar{\beta} \cdot \Delta T \cdot B^{2}-c_{1} B+C_{2} \tag{x}\\
& I \quad 3 \cdot C \\
& O=\left(\frac{d P}{d \xi}+\bar{\rho} g\right) \cdot \frac{B^{2}}{2}+\frac{1}{12} \bar{\rho} \bar{g} \bar{\beta}\left(\Delta T B^{2}\right)+C_{1} B+C_{2}
\end{align*}
$$

$$
(x+y)
$$

$$
c_{2}=-\left(\frac{d p}{d 3}+\tilde{\rho} g\right) \cdot \frac{B^{2}}{2}
$$

\therefore from x

$$
c_{1}=-\frac{1}{12} \bar{\rho} g \bar{\beta} \Delta T \cdot \square
$$

$$
\begin{aligned}
& \mathrm{Cl}+\mathrm{Cl}+\mathrm{A}^{2}+\frac{\mathrm{C}}{2} \\
& c_{1}=-\frac{1}{12}+g \bar{\beta} \Delta T B \\
& \therefore v_{1}=\frac{d}{2 t^{\prime}}\left(\frac{d t}{d z}+8 g\right)\left(y^{2}-B^{2}\right) \\
& +\frac{1}{12 \mu \bar{f} g \bar{\rho} \Delta T \frac{Y ?}{\beta}-\frac{1}{12} \bar{f} g \bar{\beta} \Delta T B \cdot Y} \\
& V_{3}=\operatorname{sem}_{x+1} \frac{B^{2}}{2 \mu}\left(\frac{d \theta}{d n}+r^{2} g\right)\left(\left(\frac{y}{n}\right)^{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore V_{3}=\frac{1}{12 \mu} \bar{\rho} g \bar{\beta} \Delta T B^{2}\left[\left(\frac{y}{B}\right)^{3}-\left(\frac{y}{B}\right)\right]+\frac{B^{2}}{2 \mu}\left(\frac{d p}{d \beta}+\bar{\rho} g\right)\left(\frac{y}{B}\right)^{2}-1 y
\end{aligned}
$$

Man Bolance
The not was flow in the z direction is gees

$$
\int_{B}^{A} \rho v_{3} d y=0 \quad \frac{d p}{d \xi}=-\overline{f g}
$$

Sutititube

$$
\rho=\bar{q}-\bar{\rho} \bar{\beta}\left(\frac{1}{2} \text { oT } y / B\right)
$$

v_{3} from above eq n

Fust, remenberet is (i) B of B in the limirs so the lerms wita eosoren power of y after insegration wril wils remaicin which n secuno ternion ${ }^{3}$ 3erpressine. Avo that yelds

$$
\begin{aligned}
& \text { Avo dp} \\
& \left.\frac{d p}{d p_{3}}+\bar{f}\right)=\frac{\text { Copticint }=0}{=} \frac{d p}{d\}}+\bar{p} g=0
\end{aligned}
$$

Therefor the exprestion for ribecomes.

$$
E v_{3}=\frac{(\bar{\beta} \tilde{\beta} \Delta T) B^{2}}{1^{2} \mu}\left((y / B)^{3}-\left(\frac{y}{B}\right)\right)
$$

\& arg velocity of cy ward moung strean

$$
\begin{aligned}
& \left\langle v_{3}\right\rangle=\frac{\int_{-B}^{0} v_{3} d y \cdot \omega}{(-B \cdot \omega)}=\frac{\omega_{1} \bar{\rho} g \bar{\beta} \Delta T B^{2}}{\beta^{2} \mu^{4}}\left[\frac{y^{4}}{4 \beta^{3}}-\frac{y^{2}}{2 \beta}\right]_{-B}^{0}
\end{aligned}
$$

There exprescionfors show that then 1 wotion in a consequarce ob buyont force associoned weth the temperalu. gradient.

Let; defur a dimenstionles velority

$$
W_{z}=\frac{B V_{3} \bar{P}}{\mu} \& \quad=(y / 3)
$$

Thus

$$
V_{3}=\operatorname{Var}^{\operatorname{Gr}}\left(y^{3}-y\right)
$$

where Crafciont runtser $=$ Cr

$$
=\left[\frac{\left(\bar{p}^{-2} g \beta^{\prime} \Delta T\right) B^{3}}{\mu^{2}}\right]=\frac{p \phi \beta^{3} \Delta p}{\alpha p}
$$

$$
\begin{aligned}
& \begin{aligned}
G x & =\frac{\bar{f} \beta^{3} \bar{\rho} \bar{\beta}}{\mu^{2}}\left(T_{2}-T_{1}\right)=\frac{\bar{\rho} g B^{3}}{\mu^{2}}\left[\bar{\rho} \bar{\beta}\left(\left(T_{2}-\bar{T}\right)-\left(T_{1}-\bar{T}\right)\right]\right) \\
& =\bar{\rho} g B^{3}[-\bar{\beta}
\end{aligned} \\
& =\frac{\bar{\rho} g B^{3}}{\mu^{2}}\left[\bar{\rho} \bar{\beta} \Delta T_{2}-\bar{\rho} \bar{\beta} \Delta t_{1}\right] \\
& =\frac{\bar{P} g B^{3}}{\mu^{2}}\left[\frac{\bar{\rho}-\bar{f} \bar{\beta} \Delta T_{1}}{L \rho_{1}}-\frac{\left(\bar{P}-\bar{P} \bar{\beta} \Delta T_{2}\right)}{\zeta P_{2}}\right] \\
& G r=\frac{\bar{\rho} g B^{3}}{\mu^{\mu^{2}}} \Delta \rho \\
& \Delta P=P_{1}-P_{2} \\
& \text { woe } \\
& \Delta T_{2}-T_{1}
\end{aligned}
$$

Assignment: Refer to example problem 11.5-1 and 11.5-2 of Bird.

For solids the grverving heat transfer eau.

Unsheody, state hecot saws/ee
Breicen
confidren a cube of dimersim $\Delta x, \Delta y,<\Delta z$,

$q_{x}=-k A \frac{\partial T}{\partial x}$
fro beat condection is - direct.

Heal Bodance
rate of boat (input - owrput) + generlion

$$
\left(\left.\cdot q_{x}\right|_{x}-\left.q_{x}\right|_{x+\Delta x}\right)
$$

$$
(\Delta x \Delta y . \Delta z)
$$

$q \rightarrow$ rate of Heal geveration/vif.

$$
\begin{aligned}
\rho \operatorname{cp} \frac{\partial T}{\partial t} & =\left(\left.k \frac{\partial T}{\partial x}\right|_{x}-\left.k \frac{\partial T}{\partial x}\right|_{x+\Delta x}\right) \cdot \Delta v \cdot \Delta z \\
& =\Delta x \Delta y \cdot \Delta z \cdot \rho c p \frac{\partial T}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
& q^{\prime}+k \frac{\partial^{2 T}}{\partial x^{2}}=p \operatorname{cp} \frac{\partial T}{\partial t} \\
& \text { or } \\
& \frac{\partial T}{\partial t}=\frac{k}{\rho \operatorname{cop}^{2} T}+\frac{q}{\rho C p} \\
&=\alpha \frac{\partial^{2 T}}{\partial x^{2}}+\frac{q^{\prime}}{\rho c_{p}}
\end{aligned}
$$

U,, pore assumed conrtaus.

SL Unib $\quad \alpha \rightarrow \mathrm{m}^{2} / \mathrm{s}, \quad T \rightarrow K \quad t_{5}, \quad k=\omega / \mathrm{m}, \mathrm{k}$

$$
\rho \rightarrow k g / \mathrm{cr}^{3} \quad \dot{q}=\mathrm{kd} / \mathrm{m}^{3}, \quad c p=3 / \mathrm{kg} \cdot \mathrm{k}
$$

for thave dimension cose

$$
\begin{aligned}
& \frac{\partial T}{\partial t}=\alpha\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right)+\frac{\dot{q}}{e c p} \\
& \frac{\partial T}{\partial t}=\alpha \nabla^{2 T}+\frac{\dot{q}}{\rho c p}
\end{aligned}
$$

Heoting a semi- infinire slab
A solidwarterid occupying the roace foon $y=0$, to $y=\infty$ hat initioltten T_{1} ano T_{0} and ait $t=0$ tern- p iat $y=0$ is raisedito

of $t \leq 0 \quad T y_{00}=T_{0} \quad \underline{I-C}$

$$
t=0 \&>0 \quad T_{y=0}=T_{1} \quad B \cdot C
$$

Fin $T(y, t)$
SIn" define $\theta=\frac{T-T_{0}}{T-T_{0}}$

$$
\begin{aligned}
& \text { I.C. } t \leq 0 \text { Qoo } \forall y \\
& \text { B. }, \quad y=0 \quad \theta=1 \quad \forall t>0 \\
& y=\infty \quad \theta=0 \quad \forall t>0
\end{aligned}
$$

$$
\theta=1-\frac{2}{\sqrt{\pi}} \int_{0}^{\frac{y}{\sqrt{4 x t}}} \exp \left(-\eta^{2}\right) d \eta
$$

Clook into previous nomentum eqn)

$$
\therefore \frac{T-T_{0}}{T_{1}-T_{0}}=1-+6 \frac{y}{\sqrt{4 \alpha t}}
$$

$$
\text { plor } \frac{T-T_{0}}{T_{1}-T_{0}}
$$

$$
\begin{aligned}
& \text { when } \\
& \frac{y}{\sqrt{4 \alpha x}}=\frac{2 \text { Then }}{\operatorname{ext} \frac{y}{\sqrt{4 \alpha t}}} / \frac{T-\pi_{0}}{T_{1}-T_{0}}=0.01 \\
& \therefore y=4 \sqrt{\alpha t}=0.99 \\
& \delta_{T}=1 / \sqrt{\alpha t} \text { nthermal penent-lio } \\
& \text { taicianes. }
\end{aligned}
$$

That weans for distances $y>\delta_{T}$ the temperdue has ehange by less than $1 \times$ of $T_{1}-T_{0}$ walltheat they

$$
\begin{aligned}
& \frac{q_{y} /_{y=0}}{}=-k \frac{\partial T}{\partial y} /_{y=0}=\frac{k}{\sqrt{n \alpha t}}\left(T,-F_{0}\right) \\
& q_{y l_{y=0} \alpha t^{-1} 2} \\
& \delta_{\Gamma} \alpha t^{1 / 2}
\end{aligned}
$$

$\frac{\text { Read Pg/ no. } 330-336 \text { geaniciplire }}{\forall}$

