M.Sc. I Sem: Comparative Anatomy of Vertebrates (ZOPALT1) CC-I

(Lab. Exercises)

Ex. 1 Identification, Classification and study of distinguish features of the representative

 examples of different classes of vertebrates: Scoliodon, Catla, Rana, Varanus, Columba, Oryctolagus.
Scoliodon

Classification :
Phylum....... Chordata Superclass......... Pisces Class....... Chondrichthyes Order.......Pleurotremata Family...Scyllidae Genus. \qquad Scoliodon (Dogfish)

Comments:

(1) Commonly called dogfish or dogshark..
(2) Spindle-shaped body, about 60 cm long, is regionated into head, trunk and tail.
(3) Dorsal and lateral sides of body are pigmented dark grey or slaty grey, while the ventral side is white.
(4) Head is dorso-ventrally compressed and flattened into snout. It contains ventrally situated slit-like mouth, obliquely situated nostrils and laterally situated protuberant eyes. A little behind eyes there are five pairs of lateral gill-clefts.
(5) Trunk bears paired fins. A pair of anterior pectoral fins and a pair of posterior pelvic fins.
(6) Heterocercal tail turned upwards and caudal fin.
(7) A pair of pigmented lateral lines extends from head to tail.
(8) Scoliodon exhibits sexual dimorphism. Males are easily recognized by having a pair of intromittent organs, called as claspers. Cloaca is found between 2 pelvic fins.

Classification: Phylum Chordata Super-class Pisces Class Osteichthes
Order Cypriniformes Family Cyprinidae Genus Cat/a

-Characters:

-It is strong and broad fish
-Reared in association with other major carps
-One of the major carp which gains weight very soon and develops faster than rohu
-It is surface feeder and feeds on plankton voraciously
-Dorsal surface is more elevated than ventral surface
-Colour of dorsal and vental surfaces vary slightly
-Widened mouth is tilted upside and lower lip rather thick with continuous transverse folds
-Operculum is large
-Eyes are large and black
-Barbles absent
-Dorsal fin advances of pelvic fins
-Fins are black in colour and fin rays are strong
-Caudal fin well forked
-Lateral line almost clear
-Large regular cycloid scales
-Suitable for cultivation in confined waters
Fin formula : D 18-19(3/15-16), P 19, V 9, A 8, C 19, LL 43, Ltr. 7 ½

Bufo

Classification: Phylum Chordata Class Ampibia Order Genus Catla Comments:

1. Geographical distribution: Bufo has world-wide distribution. They are abundantly found in India, United States and Pacific State of Alaska. Miocene.
2. Bufo is terrestrial, nocturnal, hiding under logs and stones or in burrows in day. It enters water only to breed and spawn.
(3) Commonly called as true toad.
(4) It differs from frog in having rough, dry and warty skin with more poison glands than mucous glands.

The skin is more or less of protective nature than respiratory.
(5) Body divided into head and trunk. Head contains mouth large eyes, nostrils and tympanum.
(6) Behind eyes there is a pair of large parotid poison glands. The parotid glands of the toad secrete two toxic substances, bufotalus and bufogus. These toxins cause nausea, respiratory and muscular disturbances and also effect heart functioning, if swallowed by man.
(7) Hind limbs contain 4 claw like digits and thumb pads or adhesive pads.
(8) Forelimbs and Hind limbs are short. Toes provided with horny tips and poorly developed webs.
(9) Maxilliary teeth, sternum absent and ventral parts of pectoral girdle overlap (arciferous). Sacral vertebra has dilated transverse processes. Vertebrae procoelus. Urostyle with double condyle.
(10) Liver is bilobed, Glands of swammerdams absent.
(11) Eggs are pigmented and laid in gelatinous string. Young toads mature in many years.

Varanus

Classification: Phylum Class Reptilia

Order Genus Catla

Comments:

(1) Varanus is distributed in Africa. Southern Asia, South East islands of Australia, India, Sri Lanka and Malaya.
(2) Varanus inhabits dry places under stones and rocks and leads a burrowing life It is most active at night and feeds upon tortoises, squirrels and dead bodies of other animals Monitor lizards are carnivorous and semiaquatic.
(3) Commonly known as Monitor lizard.
(4) Animal measuring 60 to 90 cm in length is divided into head, neck, trunk and tail.
(5) Body is covered with smooth, small scales having large brownish, black and orange patche which act like warning colours.
(6) Head is triangular and contains fixed eyes, nostrils and mouth. External ear opening present ju behind head.
(7) Mouth gap wide with a long bifid smooth and protrusible tongue. Teeth large pointed, pleurod and dilated at base.
(8) Osteoderms absent. Post-orbital arch incomplete.
(9) Trunk is large and stout.
(10) Tail is long thickened and serves as storehouse for fat.
(11) Forelimbs and hind limbs are stout, well developed and adapted for swift movement, but they can lift hardly body up from the ground.
(12) Digits are clawed.

Columba

Classification: Phylum Chordata Class Aves

Order Genus Catla

Comments:
(1) Columba is commonly found in India, forested zone of the Pacific coast and United States. Eocene to Recent.
(2) Columba livia is the most common and familiar bird around man, nesting in buildings, old houses, warehouses, sheds and railway stations. Their flight is swift and strong. Breeding continues throughout the year.
(2) Commonly called as blue-rock pigeon and Kabutar in Hindi.
(3) Body is divisible into head, neck, back and breast and abdomen.
(4) Plumage is grey with glistening metallic green and purple on breast and neck.
(5) Head contains large eyes and slit-like nostrils. It is produced into a short and slender bill or beak. Upper and lower beaks are covered by the horny sheath, called rhamphotheca. At the base of the upper beaks there is a patch of skin called cere.
(6) Beak adapted for seed-eating.
(7) Eyes are large, rounded, with a well-developed nictitating membrane and a rounded pupil. (7)

Forelimbs are modified into wings which contain besides skeleton flight feathers called as remiges. Feet are covered with epidermal scutes formed by the fusion of several reptilian epidermal scales.
(8) Hind limbs are modified for bipedal locomotion. Tarsus usually shorter than toes. Wing feathers, tail feathers present. Other structures seen are neck, breast, abdomen and black bars on wings. (9) Eggs white and unmarked.
(9) Pigeons serve as an excellent example for artificial selection of Darwins theory of evolution as various varieties have been produced by man.
(10) Crop large, producing 'pigeon milk' to feed small young.

Classification: Phylum Chordata Class Mammalia

Order Genus Catla

Comments

(1) Inhabiting fields, grasslands and woodlands. Gregarious, crepuscular (coming out of burrows for feeding in twilight), coprophagous (eating again their soft stool) for maximum
(2) Commonly called as Rabbit.
(3) Body cat-like and divisible into head, neck, trunk, abdomen and tail.
(4) Head contains long tactile vibrissae or whiskers, external nares, usually shorter eyes and mouth.

External ears large having external auditory meatus.
(5) Length 40 cm from mouth to anus.
(6) Fur colour white, black, brown or spotted. (
(7) Males have muscular skin-covered penis.
(8) Females have clitoris.
(9) Forelimbs used for digging and hind limbs for leaping. Fast runner (30 to 40 km per hour). Forelimbs contain upper arm, forearm, metacarpus, hand and clawed fingers. Hind limb contains thigh, shank, metatarsus, foot and clawed toes.

Ex. 2 Study of permanent slides showing whole mount of vertebrate scales: Cycloid,

 Ctenoid, Placoid.1. Placoid scales: Consists of a basal plate and a spine, giving a rough surface to skin. Basal plate is formed of a substance resembling the cement of teeth, secreted by the dermis. The spine develops from the malpighian layer of the epidermis -The outermost covering of spine is made of vitrodentine while inner layer is dentine which encloses pulp cavity. The basal plate has an aperture through which blood vessels and nerves of the dermis enter into the pulp cavity -The placoid scales do not overlap each other -Ecto-mesodermal in origin, resemble teeth in basic structure.

2. Cycloid scales : Thin, transparent, roughly rounded -Shows alternate ridges and grooves -Ridges or circuli are concentric rings -Central part is focus -Oblique grooves or radii running from the focus to the margin -Dermal in origin -First appear on the caudal peduncle of the larva and then on the remaining body -Project diagonally in an imbricating pattern, forming a protective covering over the body -The circuli or ridges are less distinctly seen in the posterior part of the scale to which chromatophores are also attached. Bony material is ichthylepdin. eg. Carps (Teleosts).

3. Ctenoid scales: Basically similar to the cycloid scale -Has a serrated margin and spines on posterior part eg. Perciform fishes (Anabas, Nandus, Channa).

Ex. 3 Comparative study of histological slides of skin in different group of vertebrates:

V.S. of skin of Scoliodon, Rana, Uromastix, Columba, Oryctolagus.

Scoliodon

Rana

Uromastix

Columba

Oryctolagus.

Characters	FISH -Dogfish (Scoliodon)	AMPHIBIA- Frog (Rana)	REPTILIA- Lizard (Uromastix)	AVES- Pigeon (Columba)	MAMMALIA- Rabbit (Oryctolagus)
A. INTEGUMENT					
1. Skin surface \& attachment	Skin hard, rough, rigid, leathery and firmly attached to body.	Skin, thin, moist, slimy, smooth, fitting loosely on body enclosing large sub- cutaneous lymph spaces beneath dermis.	Skin thicker, dry, rough, and loosely folded along the sides of neck and trunk.	Skin, thin, dry, hard, flexible and loosely attached to achieve maximum movement for flight.	Skin thickest, dry. elastic and loosely attached to body. Variously modified.

2. Colouration	Colour of Scoliodon is dark, grey dorsally and pale white ventrally. In fishes, greatest colour patterns amongst chordates.	Colour of Rana is greenish with black and brown patches above and lighter pale yellow below.	Body of Uromastix is yellow brown with dark spots above and lighter and paler below. In reptiles, colour patterns for warning or concealment.	Rock pigeon is slaty-grey with green and purple sheen around neck and breast and two black bars on each wing. Birds in general are beautifully coloured.	Colour of rabbit is dustybrown and protective. Mammals in general are dull coloured.
3. Pigment cells	Pigment containing chromatophores and guanin containing irridophres located in dermis.	Chromatophores located in dermis	Chromatophores located in dermis	Pigment cells found in feathers, they migrate from dermis. feathers.	Pigment granules located in hair and epidermis, pigment cells in dermis.
4. Colour change (Metachrosis)	Body color does not change. Some fishes have protective colouration.	Frog has protective colouration for camouflage and can body colour to match with the surroundings.	Uromastix has no power to change body colour. However, Calotes and Chamaeleons can change body colours.	No capacity for change of body colouration..	Usually, no capcity to change body colouration.
5. Cutaneous respiration	No cutaneous respiration. Not permeable to water.	Skin protective and permeable to water, hence cutaneous respiration present.	No cutaneous respitation. Skin protective and water-proof.	No cutaneous respiration. Skin protective, insulating and waterproof.	No cutaneous respiration. Skin protective, insulating and water-proof.
6. Epidermis	Epidermis stratified, thin and without a cornified stratum corneum, thin cuticle present,	Stratified epidermis with a thin stratum corneum, continuously shed in patches.	Epidermis stratified, relatively thicker stratum corneum periodically shed in bits or in one	Epidermis stratified, relatively thinner, and seasonally shed and	Epidermis greatly stratified. Stratum corneum highly specialized

	no moulting.		piece.	replaced.	with several modifications. No regular moulting.
7. Epidermal glands	Epidermis contains numerous unicellular mucous secreting gobbler gland cells. Multicellular poison and luminescent glands also occur in some fishes.	Epidermis is rich in mucous glands. Some amphibians have poison glands like parotid glands of toad.	Lizard have few but no mucous glands. Male lizard has femoral glands on thighs. Some reptiles have scent or musk gland.	No skin glands occur in birds except a single large preen or uropygial gland on tail. No mucous glands present.	Skin richly glandular containing characteristic mammary, sweat and sebaceous glands besides scent glands. No mucous glands present.
8. Dermis	Dermis is typical with connective tissue fibres, blood and lymph vessels and pigment cells. Connective tissue fibres run parallel to surface	Dermis is thin and typical. It consists of an outer loose stratum spongiosum, and an inner compact layer, stratum compactum. Connective tissue fibres are vertical as well as horizontal.	Dermis is thick and typical, containing connective tissue fibres, muscles and nerves, blood capillaries and lymphatic vessles, and pigment cells.	Dermis is mostly thin and typically made of muscle fibres, nerves,blood capillaries and connective tissue. It has no pigment cells.	Dermis is proportionately thicker of all vertebrates, containing intricate fibres, tactile organs, nerves, blood vessels and pigment cells.
9. Dermal scales	Dermal scales are present as placoid scales.	Dermal scales are absent in frog although embedded in the skin of some Gymnophiona.	Dermal scales absent in Uromastix, but some dermal scales, scutes or plates, called osteoderms, occur in some lizards, crocodiles and turtles.	Dermal scales are absent.	Dermal scales or plates absent, occur only in armadillos and whales.
B. Exoskeleton					
1. Parts of exoskeleton	Exoskeleton present and represented by scales.	Exoskeleton completely lacking.	Exoskeleton present and represented by scales, claws, etc.	Exoskeleton present formed by scales, claws, sheaths of beaks and feathers.	Exoskeleton present and formed by scales, claws, hairs, hoofs, horns, nails, outer covering of antlers, etc.

$\left.\left.\left.\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { 2. Epidermal } \\ \text { scales }\end{array} & \begin{array}{l}\text { Epidermal scales } \\ \text { are absent. }\end{array} & \begin{array}{l}\text { Both epidermal } \\ \text { and dermal scales } \\ \text { are absent. }\end{array} & \begin{array}{l}\text { Epidermal scales, } \\ \text { thin, small, } \\ \text { overlapping and } \\ \text { covering whole of } \\ \text { the body. }\end{array} & \begin{array}{l}\text { Epidermal } \\ \text { scales small, } \\ \text { present on } \\ \text { lower legs, } \\ \text { feet and } \\ \text { base of beak } \\ \text { only. }\end{array} & \begin{array}{l}\text { Epidermal } \\ \text { scales are } \\ \text { absent in rabbit } \\ \text { but present on } \\ \text { the feet and } \\ \text { tails of the rats, } \\ \text { beavers, etc. }\end{array} \\ \hline \begin{array}{l}\text { 3. Dermal } \\ \text { scales }\end{array} & \begin{array}{l}\text { Represented by: } \\ \text { Cycloid, ctenoid, } \\ \text { ganoid and } \\ \text { cosmoid. }\end{array} & \text { No dermal scales } & \begin{array}{l}\text { lincludes dermal } \\ \text { scutes and plates } \\ \text { crocodiles and } \\ \text { turtles. }\end{array} & \begin{array}{l}\text { No dermal } \\ \text { scales }\end{array} & \begin{array}{l}\text { No dermal } \\ \text { scales }\end{array} \\ \hline \text { 4. Other parts } & \begin{array}{l}\text { Hair, feathers, } \\ \text { horns and beak } \\ \text { absent }\end{array} & \begin{array}{l}\text { Hair, feathers, } \\ \text { horns and beak } \\ \text { absent }\end{array} & \begin{array}{l}\text { Hair and feathers } \\ \text { absent. } \\ \text { Grotesque horns } \\ \text { (horned toad), } \\ \text { rattle (rattle } \\ \text { snake) and horny } \\ \text { beaks (turtles) } \\ \text { present in some. }\end{array} & \begin{array}{l}\text { Hair and } \\ \text { horns } \\ \text { absent. } \\ \text { Feathers } \\ \text { (contour, } \\ \text { down and } \\ \text { filoplume). }\end{array} & \begin{array}{l}\text { Feathers and } \\ \text { beaks absent. } \\ \text { Hair modified } \\ \text { into hair horns } \\ \text { (Rhino), scales } \\ \text { (Pangolins). }\end{array} \\ \text { Spines }\end{array}\right] \begin{array}{l}\text { (Echidna), quills } \\ \text { (porcupine), } \\ \text { etc. Claws }\end{array}\right] \begin{array}{l}\text { become nails } \\ \text { (primates) or }\end{array}\right\}$

Ex. 4 Study of available permanent slides of different vertebrate organs: T.S. of mammalian

liver, pancreas, testis, ovary, thyroid, duodenum and L.S. of kidney, etc.

T.S. of mammalian liver

Comments:

(1) Liver of rabbit is a five-lobed structure. T.S. passing through liver shows hepatic strands ducts, blood vessels and central vein.
(2) The liver is a solid glandulo-reticular organ made of polyhedral radiating column of cells called as laminae.
(3) Bile canaliculi lie among the hepatic cells and connect in groups forming bile ductule or portal-tract consisting of bile, duct hepatic artery and hepatic vein.
(4) Each hepatic lobule is pierced everywhere with a network of sinusoid.
(5) Conspicuous cells occur at intervals on the walls of the sinuses. These are called as stellate c Kupffer cells. They are highly phagocytic and they ingest erythrocytes and other suspended particles. Kupffer cells could be best seen under high magnification presence of Kupffer cell indicates immune response.

T.S. of mammalian thyroid

Comments:

(1) It is the most familiar endocrine gland, consisting of right and left lobes connected across to the ventral side by isthmus.
(2) Thyroid gland comprises of a framework of connective tissue, enclosing numerous roundes oval follicles or vesicles of different sizes and covered by capsule.
(3) Histologically it consists of a number of rounded thyroid follicles of various sizes, separated by one another by connective tissue strands.
(4) Thyroid is richly supplied with blood vessels and nerves. It is innervated from the sympathetic nerves.
(5) Thyroid secretes thyroxin (C15H1104N14) which contains an amino acid and 65\% of iodine.
(6) The thyroid is composed of follicular and interfollicular zones. Follicles are surrounded single layered cuboidal epithelial cells. Lumen of each follicle, contains a viscous liquid called thyroid colloid.
(7) Interfollicular zone contains nerves, blood, vessels and large number of nuclei : nerves, blo vessels and large number of nuclei.

T.S. of mammalian pancreas

Comments:

(1) Pancreas is a very important digestive gland. T.S. passing through it shows that it is composed of various alveoli or pancreatic acini. It is a compound tubulo-alveolar racemose gland consisting of both exocrine and endocrine parts.
2) The mammalian pancreas can be distinguished from that of frog in having distinct lobulations, (alveoli or pancreatic acini and islets of Langerhans.
(3) Each pancreatic lobe contains 10 to 20 secretory cells or acini which are nucleated. The central part has narrow to wide lumen. The pancreatic duct, large artery and vein are also seen in the section. Several cut blood vessels present in connective tissue.
(4) Acini and islets of Langerhans arevery clearly seen. The wall of each acinus is made up of columnar or pyramidal cells. Each cell contains a central nucleus and course granules. Each and acinus has wide lumen.
(5) The region of islets of Langerhans reveals 3 or 4 kinds of cells-a, B and undifferentiated cells.

T.S. of mammalian testis

Comments:

(1) There is a pair of smooth, oval-shaped testes, each enclosed in a thin envelope, called as tunica albuginea.
(2) Histologically each testis is internally divided into a number of lobules with occasional internal communications and separated by connective tissue.
(3) Glandular substance of the testis is wholly made up of convoluted seminiferous tubules. Large number of cut seminiferous tubules are seen with varying diameter.
4) Section shows tunica albuginea, cells, sperms, seminiferous (B). tubules and lumen of seminiferous tubules
(5) Interstitial cells which produce a hormone, called as testosterone, which is responsible for the development of male secondary sexual characters.
(6) Testis is covered by serosa and a fibrous coat or tunica albuginea.
(7) At the interjection of two seminiferous tubules, connective tissue, interstitial cells vacuoles a blood vessels are seen.
(8) In the seminiferous tubules are some nutritive Sertoli cells.
(9) Seminiferous tubules appear rounded or oval in section. Each tubule is surrounded by a thin basement membrane lined by germinal epithelium.
(10) From basement membrane to inwards there are several kinds of cells:
(i)Spermatogoina liealong periphery of tubule and appear closely packed together, (ii) Primary spermatocytes - They have the largest cells and large nuclei, (iii) Secondary spermatocytes - Smaller cells with deeply stained nuclei (iv) Spermatids- small clusters of cells with condensed nuclei (v) Spermatozoa or sperms lie in the cavity of tubule.
(11) Sperm has head and tail.
(12) The nucleus of the sperm lies in the head which is pointed as the acrosome.
(13) Outer covering tunica albuginea, interstitial cells and blood vessels, etc. are seen in the section.

T.S. of mammalian ovary

Comments:

(1) Outer most layer is of peritoneum which has cupical cells.
(2) Just beneath peritoneum is germinal epithelium bounded by connective tissue called as tunica albuginea.
(3) Germinal epithelium gives rise to oogonia, developing follicles and Graafian follicle.
(4) Section shows young follicles and mature Graafian follicles and corpus luteum.
(5) Interior of the section shows connective tissues, interstitial cells and blood vessels.
(6) Detailed structure of Graafian follicle in seen under high magnification. Follicle is surrounded by connective tissue or stroma.
(7) Fully mature oocyte is surrounded by a thick transparent layer called Zona pellucida surrounded by another layer corona radiate.
(8) Corona radiata in surrounded by mass of cells called as discus proligerous or cumulus.
(9) Corona radiale is surrounded by liquor folliculi and then by membrane granulose. Thick membrane granulose is covered by thick layer called as theca folliculi.
T.S. of mammalian ileum

Comments:

(1) The T.S. through ileum shows that it is composed of outer serosa, muscular coat, sub-mucosa. muscularis mucosa and mucosa.
(2) Serosa forms outer thin layer covering containing squamous epithelial layer.
(3) Muscular coat consists of outer longitudinal and inner circular fibres.
(4) Longitudinal muscle layer is comparatively thinner. By their contraction intestinal tube is shortened but its lumen is widened.
(5) Circular muscle layer is almost double in thickness than the L.M.L. On its (CML) contraction there is increase in the size of the intestine but decrease in the lumen.
(6)Sub-mucosa is well developed and is composed of loose connective tissue.
(7) Sub-mucosa is very thin layer consisting of outer longitudinal and inner circular muscle layer.
(8) Mucosa is thrown into villi or folds composed of single-layered endodermal columnar epithelial cells. From the base of villi upto surface layer there are several tubular simple or branched glands called as crypts of Lieberkuhn. These glands are lined by epithelial cells containing goblet cells.
(9) Above muscularis mucosa there are several nucleated rounded glands called as Brunner's glands. Villi are composed of tall simple columnar endodermal columnar epithelial cells or absorptive cells and rounded goblet cells. Several nuclei are seen. The inner substance of the villi contains connective tissue, lacteals and nuclei. Along with basal nuclei rounded lymphocyte cells are clearly seen.

L.S. of mammalian kidney

Comments:

(1) Kidney is metanephric, compact, bean-shaped, retro-peritoneal, compound, tubular to dorsal body uwall. Covered by retroperitoneal covering and fibroin capsule.
(2) Saggital section of the kidney reveals two distinct portion (i) Cortex and (ii) Medulla. Between the two zones is undefined boundary zone characterized by large blood vessels.
(3) Cortex has several rounded Bowman's capsules. Medulla is subdivided into conical portions called pyramids.
(4) Cortex and medulla are entirely composed of uriniferous tubules, which havestraight direction in the medulla and contorted arrangement in the cortex. Renal artery, renal vein and ureter enter at the hilum.
(5) Groups of straight tubules pass from the medulla through the thickness of the cortex forming the medullary rays.
(6) Between the medullary rays are the deep conical downgrowths, called as rena column of Bertini.
7. Uriniferous tubules are lined with large granular ciliated epithelial cells and begin in the cortical Part of the organ in dilation as Bowman's capsules, which enclose convoluted tufts of blood capillaries called glomerulus and several nuclei.
8. Capsule is lined by flattened epithelium. Glomerulus is formed by branches of afferent and efferent vessels. Tubule leaves the capsule by neck and it forms proximal convoluted ascending limb, descending limb and loop of Henle. Blood vessels are also seen in the section.
V.S. of reptilian lung

V.S. of Lung of lizard

Comments:

(1) V.S. lung of lizard shows outer serosa enclosing lung alveoli.
(2) Inner lining of lung is raised into number of septa like structures, enclosing air sacs or alveoli.
(3) Lung contains rich blood supply.
(4) Alveoli are separated by septa.
(5) Anterior lung is more sacculated thicker and richly vascularised.
(6) Lung cavity is continuous.
(7) Bronchus entering into lung does not branches into bronchioles but it directly forms alveoli.
(8) In lungs deoxygenated blood is brought by pulmonary artery and oxygenated blood carried away by pulmonary vein.

T.S. of amphibian testis

Comments:

(1) TS passing through testis shows that it is made up of peritoneal epithelium, tunica, albuginea, blood vessels, intertubular connective tissue and mesorchium.
(2) Testis are attached with kidney with mesorchium.
(3) T.S. of a seminiferous tubule shows that it is composed of a germinal epithelium which gives rise to spermatogonia or sperm mother cells.
(4) Other stages are spermatocytes, spermatids and sperms representing various stages of spermatogenesis are seen in the section.
(5) Section shows cut blood vessels and inter-tubular connective tissue.
(6) In section interstitial cells, primary spermatocytes, secondary spermatocytes, spermatids and sperms are seen.
7. Interstitial cells present in the section secrete male hormone testosterone, which is responsible for developing secondary sexual characters.

T.S. of amphibian Ovary

Comments:

(1) There are two ovaries attached to kidneys by mesovarium.
(2) Each ovary is composed of several hollow lobules containing developing ova in various stages of development, connective tissues, young follicles, blood vessels, primary oocytes, germinal epithelium and theca.
(3) Each lobule is surrounded by theca externa, theca interna, germinal epithelium, follicular cells and ova in various stages of development.

Ex. 5 Demonstration of brain and heart of different vertebrates through alternative methods of dissection.

a) Comparative study of heart

b) Comparative study of Brain

Characters	FISH Dogfish (Scoliodon)	AMPHIBIA Frog (Rana)	REPTILIA Lizard (Uromastix)	AVES Pigeon (Columba)	MAMMALIA Rabbit (Oryctolagus)
25. Shape \& Size	Large, elongated, rhomboidal dorsal structure overlapping midbrain and diencephalon anteriorly and	[III] HINDA. CEREBSmall,narrow, dorsal transverse, band just behind optic lobes.	BRAIN BELLUM Small, flat, semicircular ridge. Remains uncovered.	Very large elongated antero - posteriorly, covering midbrain in front and medulla behind.	Very large, transversely elon- gated, partly overlapping me- dulla behind and midbrain in front.
26. Division	medulla posteriorly. Made of 3 lobes divided by 2 transverse furrows.	It is undivided.	Remains undivided.	Divided into 3 lobes : a large median vermis, and two small lateral flocculi.	Divided into 5 lobes: a median vermis, two lateral lobes each terminating into a flocculus.
27. Surface	Dorsal surface bears irregular folds.	Surface is smooth, without folds.	External surface is smooth.	Surface folded all over.	
28. Ventricle	Cavity or epicoel extensive.	Cavity small.	Cavity small.	Solid.	branched.
29. Arbor vitae	Absent.	Absent.	Absent.	Absent.	White matter looks tree-like, called arbor vitae in grey matter.
30. Pons varolii	Absent.	Absent.	Absent.	Absent.	It is a stout, ventral transverse neural band connecting two lateral sides of cerebellum.

B. MEDULLA OBLONGATA

[IV] CRANIAL NERVES
34. Number 10 pairs

Ex. 6 Comparative study of vertebrae, limbs and girdles of different vertebrate groups.

Rabbit

Limb bones

Fore limb

Frog

Varanus

Fowl

Rabbit

Hind limb

Frog

Varanus

Fowl

Rabbit

Comparative Account of Girdles of Vertebrates

A. Pectoral Girdles						
Characters	Cartilagenou s Fish Dogfish (Scoliodon)	Bony fish Rohu (Labeo)	Amphibia Frog (Rana)	Reptilia Lizard (Uromastix)	Aves Pigeon (Columba)	Mammalia Rabbit (Oryctolagus
1. Condition	Cartilagenou s, not well developed		Bony as well as cartilaginou s, well developed	Bony as well as cartilaginous, well developed	Bony, well developed for flight	Largely bony, well adapted for running and burrowing
2. Position	Embeded in lateral and ventral body wall, posterior to gills, support pectoral fins		Embeded in thoracic body wall around heart which it protects, supports forelimbs	Embeded inventor- lateral thoracic wall, supports forelimbs	Lies at the antero-dorsal sides of trunk, supports wings	Lies along the antero-lateral sides of trunk, supports forelimbs
3. Shape and	U- shaped, consists of right and left		Like an inverted arch, made	Like an inverted arch, made of	Made of two roughly V- shaped halves	Made of two somewhat triangular

	halves firmly fused midventrally	of two identical halves united midventrally	two similar halves united mid-ventrally	widely apart from each other	halves completely separate from one another
4. Attachment	Not attached dorsally to vertebral column or ventrally to sternum which is absent	Both halves united midventrally with sternum	Both halves meeting ventrally with a T-shaped interclavicles and a rhomboidal steral plate	Two halves are firmly connected with sternum through a Vshaped furcula made by two clavicles and one interclavicle	Two halves do not unite with sternum or vertebral column
5. Parts or Bones	Each half is made of scapular and coracoids portions	Each half consists of scapular and coracoids portions	Each half includes scapular and coracoids parts	Each half includes scapular and coracoids parts	Each half includes a large scapulacoracoid bone
6. Scapula	It is dorsal, rod like and tapering	Scapula is lateral, stout, flat and broader at the two ends	Scapula is lateral, stout, oblong and broader dorsally but narrower ventrally	Scapula is lateral is elongated, sabre like, dorsal conneted with underlying ribs by muscles and with coracoids by ligaments	Scapula or scapulocoracoi d is lateral, large, flat and triangular with broad base dorsal and narrow apex ventral
7. Scapular processes	None	None	Scapula gives out an anterior ossified process, mesoscapula	Scapula bears near anterior end a scapular tubercle. Anterior end also gives out an acromian process.	Outer surface of scapula bears a prominent vertical ridge or spine. It terminates below into a free acromian process posteriorly giving off a mecromian process.

	and placed ventrally.		slender rod like, transverse bone attached in front of precoracoid cartilage.	curved bones separated medially from each other by interclavicles.	bones, attached dorsally to scapula and coracoids and ventrally fused with interclavicles.	bony rod. Inner end attached to manubrium of sternum while outer end with acromian process of scapula.
12. Interclavicle	Absent		Absent	T-shaped, interclavicles present between clavicles and two halves of pectoral girdle.	Both clavicles fused with a laterally compresseddi sc or hypocliedium, forming a V shaped composite bone, the furcula.	Absent but present in prototherians.
13. Foramen triosseum	Absent		Absent	Absent	Present, formed by the dorsal end of clavicle, acromian process of scapula and acrocoracoid process of coracoids. Through this tendon of pectoralis minor muscle passes to be inserted dorsally upon head of humerus.	Absent
B. Pelvic Girdles						
Characters	Cartilagenou s Fish Dogfish (Scoliodon)	Bony fish Rohu (Labeo)	Amphibia Frog (Rana)	Reptilia Lizard (Uromastix)	Aves Pigeon (Columba)	Mammalia Rabbit (Oryctolagus
1. Condition	Simple, cartilaginous		Bony as well as	Bony, solid and strong.	Bony, large, light,	Bony, large, stout, well

	, transverse, rod- like, called ischiopubic bar.	cartilaginou s, well developed.	Well developed for tetrapod locomotion.	pneumatic. Well adapted for flight and bipedal locomotion.	adapted for fast running.
2. Position	Embeded in ventral abdominal wall in front of cloaca, supports pelvic.	Occupies posterior region of trunk and gives support to pelvic region and hind limbs.	Occupies pelvic region of trunk and supports hind limbs	Occupies pelvic region and gives support to legs.	Occupies pelvic region and supports hind limbs
3. Shape and halves	Horizontal, transverse, rod- like, not divided into halves	V-shaped, made of two similar halves, called ossa innominata, united posteriorly into a median disc.	Made of two similar triradiate structures of ossa innominata, meeting mid ventrally but not uniting with each other	Made of two similar triradiate structures of ossa innominata, completely separated as an adaptation for laying eggs.	Two identical triradiate halves or ossa innominata are firmly united midventrally at a pubic symphysis.
4. Attachment with vertebral column	Not attached to vertebral column.	Two limbs run parallel with vertebral column while median disc supports last vertebra or urostyle	Only iliac bones attached with the first sacral vertebra.	Firmly fused with synsacrum as an adaptation for bipedal locomotion	Ilia firmly articulate with sacrum
5. Bones	Not determined into separate bones	Each half or os innominatu m made of three bonesilium, ischium and pubis	Each half or os innominatum made of three bonesilium, ischium and pubis	Each half or os innominatum made of three bones- ilium, ischium and pubis	Besides three usual bones, a fourth bone, called cotyloid, also found
6. Joints	Absent	Joints of bones	Joints of bones	Joints of bones not	Joints of bones distinct

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { postacetabula } \\ \text { rilium }\end{array} & \\ \hline \text { 11. Pubis } & \begin{array}{l}\text { Not distinct } \\ \text { hrom } \\ \text { ischium }\end{array} & & \begin{array}{l}\text { Both pubes } \\ \text { are small, } \\ \text { triangular, } \\ \text { made of } \\ \text { calcified } \\ \text { cartilage, } \\ \text { and fuse at } \\ \text { a mid- } \\ \text { ventral } \\ \text { pubic } \\ \text { symphysis } \\ \text { in the disc. } \\ \text { Epipubis } \\ \text { absent. }\end{array} & \begin{array}{l}\text { Long slender } \\ \text { bone } \\ \text { directed } \\ \text { anterio- } \\ \text { ventrally } \\ \text { meeting its } \\ \text { fellow at a } \\ \text { pubic } \\ \text { symphysis } \\ \text { having a } \\ \text { small knob } \\ \text { like anterior } \\ \text { cartilage, the } \\ \text { epipubis. }\end{array} & \begin{array}{l}\text { Pubis is a thin, } \\ \text { slender bone } \\ \text { running } \\ \text { backwards } \\ \text { and parallel to } \\ \text { ventral edge } \\ \text { of ischium, no } \\ \text { pubic } \\ \text { symphysis. }\end{array} & \begin{array}{l}\text { Pubis is small } \\ \text { slender, } \\ \text { ventro-medial } \\ \text { nad meets its } \\ \text { fellow at a } \\ \text { mid-ventral } \\ \text { pubic } \\ \text { symphysis. }\end{array} \\ \hline \text { Epipubis } \\ \text { absent. }\end{array}\right\}$

15. Cotyloid bone	Absent		Absent	Absent	Absent	Present

Pectoral Girdles

Ex. 7 Study of afferent and efferent arteries of fish.

- Afferent branchial arteries:
- There are four pairs of afferent vessels.
- 1st pair is formed by the bifurcation of ventral aorta.
- $2 n d$ pair is having separate origin, but $3^{\text {rd }}$ and $4^{\text {th }}$ have a common origin.
- These arteries arise from the ventral aorta which supply deoxygenated blood to the gills for oxygenation.

- Efferent branchial arteries:

- These arteries arise from the gills and supply oxygenated blood to all body parts.
- The oxygenated blood from the gills is collected by 09 efferent blood vessels on each side.
- First 08 join in pairs while $9^{\text {th }}$ is connected with $4^{\text {th }}$ pairs of efferent vessels by a longitudinal connective.

Ex. 8 Study of cranial nerves of fish.

- -Cranial nerves originate from cranium/brain. These are generally 10 pairs but ' O ' nerves associated with olfactory nerves have also been identified.
- -Following are the cranial nerves of a teleost fish:
- - 'O' nerve: It originates from cerebral hemisphere, near olfactory lobe and innervates olfactory sac (sensory nerve).
- I- Olfactory nerve: It originates from olfactory lobe and ends in the olfactory rosette/sac.
- -It is a specially sensory nerve and carries smell impulses to the brain.
- -II- Optic nerve: It arises from optic tectum, both optic nerves cross each other and supplies the retina of the eye. It is special sensory nerve carrying visual impulses to brain.
- -III- Occulomotor nerve: It originates from the ventral side of mid brain/optic lobe. This nerve supplies to the superior, inferior, anterior recti and inferior oblique muscles of the eye. It is a motor nerve which controls the movement of eye ball.
- -IV- Trochlear nerve: It originates from the dorso-lateral side of the mid brain, between optic lobes and cerebellum.
- -It supplies the superior oblique muscles of the eye ball (motor nerve).
- -V- Trigeminal nerve: It originates from the lateral side of medulla and innervates the upper lower jaws and the snout. It divides into three branches:
- (a) Ophthalmicus: It has two branches:
- (i) Ophthalmicus profundus: It supplies olfactory capsule and dorsal skin of snout.
- (ii) Ophthalmicus superfacialis: It supplies skin of snout.
- (b) Maxillaris: It also has two branches:
- (i) Maxillaris superior: It supplies skin of upper jaw.
- (ii) Maxillaris inferior: It innervates posterior part of upper lip.
- (c) Mandibularis: It innervates muscles of lower jaw.
- -Trigeminal nerve is mixed somatic sensory and motor in functions. It shows thermal and tectile sensibility of skin on anterior portion of head.
- -VI- Abducens nerve: It arises from ventral side of medulla, and innervates posterior and external rectus muscles of eyes. It is motor in nature.
- -VII- Facial nerve: It also originates from side of medulla, forming trigemino-facial complex, it is divided into four branches:
- (a) Ophthalmicus superfacialis: It innervates the supra orbital canal of the lateral line system.
- (b) Ramus buccalis: It supplies the skin of snout and maxillary barbles, and infra orbital lateral line canal.
- (c) Ramus palatinus: It supplies roof of the buccal cavity and pharyngeal cavity.
- (d) Ramus hyomandibularis: It is divided into three branches:
- (i) Mandibularis externus: It innervates mandibular canal (lower jaw, lower lip and mandibular teeth).
- (ii) Mandibularis internus: It supplies the mucous membrane of buccal floor.
- (iii) ramus hyoideus: It innervates muscles of hyoid arch. It is a mixed nerve, special and somatic sensory visceral and motor functions.
- -VIII- Auditory nerve: It originates from lateral side of medulla, supplies internal ear. It is special sensory in nature. It has two branches:
- (a) Vestibular branch: To supply utriculus and ampullae.
- (b) Saccular branch: To supply sacculus and lagena.
- -IX- Glossopharyngeal nerve: It originates from ventro-lateral side of medulla and innervates the first gill slits and pharynx. It is a mixed nerve and supplies taste buds of
pharynx and muscles of first gill slit through pre-trematic branch and to muscles of pharynx and a part of lateral line system through post-tramatic branch.
- -X- Vagus: It takes its origin from the medulla. It is a mixed nerve. It has three branches:
- (a) Branchialis: -These are three in number. Each innervates the pharynx and then divides into pre-trematic and post-trematic branch to supply muscles of remaining three gills.
- (b) Visceralis: It supplies various visceral organs.
- (c) Lateralis: It innervates lateral line canal.

