Experiment-1

Aim :-To calculate the Mean height of the students of class.

Introduction:-

The tendency of the distribution is known as its Central tendency and the measures devised to consider this tendency are known as measures of Central tendency.

The most familiar and widely used measure of Central tendency is the arithmetic mean. It represents the entire data by one value which is obtained by adding together all the values and dividing this by the number of observations.

Arithmetic Mean $=\frac{\text { Sum of all observations }}{\text { Total number of observation }}$

Procedure:-
Step 1 - Gather all the height measurements for all the students in the class.
Step-2 - Sum all the height measurements. (Variates -X)
Sum = (X1 + X2 + X3 +
Step-3 - Divide the sum by the total number of observations.

$$
\operatorname{Mean}(\bar{x})=\frac{x_{1}+x_{2}+x_{3}+\cdots \cdots+x_{n}}{n}=\frac{\sum x}{n}
$$

Observation :-

Observation:-

S.	Name of the stadents	Height (in cm.)	NO.	Name of the students.	Height (incm)
1	Aadya	165	29	Nikesh	175
2	Aakash	170	30	Nilesh	170
3	Abhay	165	31	Onkar	171
4	Abhishek	168	32	Pallavi	168
5	AKansha	165	33	Prashant	177
6	Alka	165	34	Purbasha	168
7	Ancuradha	164	35	Purvi	166
8	Arcen	178	36	Rahul	168
9	Argan	162	37	Rajesh	170
10	Deepshikha	169	38	Rectika	164
11	farhat	162	39	Rhitu	172
12	Gajendra	170	40	Ritika	168
13	Garima	168	41	Rohit	185
14	Gracy	156	42	Roshani	165
15	Gucenja	156	43	shalini	160
16	Harshdev	165	44	shubham	174
17	Heena	168	45	Shubhangi	162
18	Homangi	165	46	Siddhant	171
19	Himanshi	166	47	Srishti	158
20	Himshikha	164	48	Suman	158
21	Indrakumar	182	49	Swastik	171
22	Kajal	168	50	Taanya	168
23	Kanha	165	52	Tarcen	175
24	Khushboo	168	52	Tikesh	174
25	Manjeet	182	543	vasundhara	172
26	Mansi	162	54.9	Vikash	175
27	Michael	176	55	vinay	178
28	Mihir	165	56	Yash.	176.

Calculation :-

Result :-

So the calculated mean height of the students of the class is 168.53 cm .

Experiment- 2

Aim :-To calculate the Mean weight of the students of class.

Introduction :-

The tendency of the distribution is known as its Central tendency and the measures devised to consider this tendency are known as measures of Central tendency.

The most familiar and widely used measure of Central tendency is the arithmetic mean. It represents the entire data by one value which is obtained by adding together all the values and dividing this by the number of observations.

Arithmetic Mean $=\frac{\text { Sum of all observations }}{\text { Total number of observation }}$

Procedure :-
Step 1 - Gather all the weight measurements for all the students in the class.
Step-2 - Sum all the height measurements. (Variates -X)
Sum = (X1 + X2 + X3 +
Step-3 - Divide the sum by the total number of observations.

Observation :-

Calculation :-
Calculation:-

$$
\begin{array}{rlrl}
\Sigma x & =x_{i}+x_{i i}+x_{i i i} & \frac{\text { S.NO. }}{} & \text { sum of } \\
& =1080+1257+1029 & \text { (i) } 1 \rightarrow 20 & 1080 \\
& =3366 & \text { (ii) } 21 \rightarrow 40 & 1257 \\
& & \text { (iii) } 141 \rightarrow 56 & 1029 \\
\bar{x} & =\frac{\sum x}{n}=\frac{3666}{56}=60.10 \mathrm{~kg} &
\end{array}
$$

Result :-

So the calculated mean weight of the students of the class is 60.10 kg .

Experiment- 3

Aim :-To calculate the Mean height of the students of class by using class intervals . (continuous series method)

Introduction:-

In a continuous series, the arithmetic mean may be calculated after taking into consideration the midpoint of various classes. However, the method will be the same for both inclusive class intervals and exclusive class intervals.

Procedure:-

There are two methods, ie. direct method and shortcut method

DIRECT METHOD

Step-1: Make class intervals from raw data and write their (f) frequencies also.
Step 2 : Find the mid value of each class (m).
Step: Individually multiple the Frequency with the respective mid value (f.m)
Step: Find the product of the Frequency (sum of f).
Step-5: Find the product of the (f.m) [sum of fam]
Step-6: By using formula, calculate the Mean

Shortcut Method

Step-1: Make class intervals from raw data and write their (f) frequencies.
Step-2: Find the mid value of each class (m).
Step-3: Calculate the deviation for each class .
[deviation (d) = Mid Value (m) - Assumed mean (A)]
(Assumed mean should be taken from mid value)
Step-4: Multiply the deviation with respective frequency (f.d)
Step-5: By using formula, calculate the Mean

Observation :-

* Observation Table :- (Direct Method)

		(m)	fam.	
s.no.	Class Interval (C1)	Frequency (f)	Midvalue	f.m
1.	$155-160 \mathrm{~cm}$	4	157.5	630
2.	$160-165 \mathrm{~cm}$	16	162.5	2600
3.	$165-170 \mathrm{~cm}$	19	167.5	3182.5
4.	$170-175 \mathrm{~cm}$	10	172.5	1725
5.	$175-180 \mathrm{~cm}$	4	177.5	710
6.	$180-185 \mathrm{~cm}$.	3	182.5	547.5

* Observation Table - (Shortcut Method)

Calculation :-
Direct method calculation

Shortcut method calculation

Calculation:-

Let the (A) Assumed mean be 167.5

$$
\begin{array}{ll}
d_{1}=m_{1}-A_{1}=157.5-167.5=(-10) & f_{1} d_{1}=-10 \times 4=(-40) \\
d_{2}=m_{2}-A_{2}=162.5-167.5=(-5) & f_{2} d_{2}=-5 \times 16=(-80) \\
d_{3}=m_{3}-A_{3}=167.5-167.5=0 & f_{3} d_{3}=0 \times 19=0 \\
d_{4}=m_{4}-A=172.5-167.5=(5) & f_{4} d_{4}=5 \times 10=50 \\
d_{5}=m_{5}-A=177.5-167.5=(10) & f_{5} d_{5}=10 \times 4=40 \\
d_{6}=m_{6}-A=182.5-167.5=(15) . & f_{6} d_{6}=15 \times 3=45
\end{array}
$$

$$
\xi F=4+16+19+10+4+3=56
$$

$$
\bar{x}=A+\frac{\Sigma f d}{\sum f}=167.5+\frac{15}{56}=167.5+0.26=167.76 \mathrm{~cm} .
$$

Result :-
So the calculated mean height of the students of the class is 167.76 cm .

Experiment- 4

Aim :-To calculate the Mean weight of the students of class by using class intervals . (continuous series method)

Introduction:-

In a continuous series, the arithmetic mean may be calculated after taking into consideration the midpoint of various classes. However, the method will be the same for both inclusive class intervals and exclusive class intervals.

Procedure:-

There are two methods, ie. direct method and shortcut method

DIRECT METHOD

Step-1: Make class intervals from raw data and write their (f) frequencies also.
Step 2 : Find the mid value of each class (m).
Step: Individually multiple the Frequency with the respective mid value (f.m)
Step: Find the product of the Frequency (sum of f).
Step-5: Find the product of the (f.m) [sum of fam]
Step-6: By using formula, calculate the Mean

Shortcut Method

Step-1: Make class intervals from raw data and write their (f) frequencies.
Step-2: Find the mid value of each class (m).
Step-3: Calculate the deviation for each class .
[deviation (d) = Mid Value (m) - Assumed mean (A)]
(Assumed mean should be taken from mid value)
Step-4: Multiply the deviation with respective frequency (f.d)
Step-5: By using formula, calculate the Mean

Observation :-

Calculation:-
Direct method calculation
Calculation :-
$\Sigma f . m=3495^{3310} \quad \Sigma f=56$
$\bar{x}=\frac{\sum f . m}{\sum f}=3 \frac{3310}{56}=59.10 \mathrm{~kg}$.

Shortcut method calculation

```
Calculation:-
Let, Assumed Mean (A) be }72.
<f.d = (-750), <f=56
\overline{x}}=A+\frac{\sumfd}{\Sigmaf}=72.5+\frac{(-750)}{56}=72.5-13.39=59.1 kg
```


Result :-

So the calculated mean weight of the students of the class is 59.10 kg .

Experiment- 5

Aim :-To calculate the Median height of the students of class from raw data.

Introduction :-

The median is another important and widely used measure of central tendency. The median is usually defined as that value which divides the distribution so that an equal number of items occur on either side of it. In other words 50% of the observation will be smaller than the median. The data are arranged in ascending order of magnitude to find out the value of the median. If the data set contains an odd number of values, the middle one of the array is the median and if there is an even number of items, the median is the average of the middle two items.

Procedure :-

Step-1: Arrange the data in Ascending / Descending order of magnitude.
Step-2: Find the value of $(n+1) / 2$ th item or $(n / 2)$ th
Step-3 : If the number of items is even, the mean of two middle terms is taken as Median.

Observation :-

* Observation :- Name Height (in cm.)		Name	(inam) Height
1. Aadya 1 '	1165	29. Nikesh	175
2. Aakash	170	30. Nilesh ...	170
3. Abhay	165 ,	31. Onkar :	171
4. Abhishek	168 ,	32. Pallavit 11	168
5. Akansba.	11 165 \% r	33. Prashant wo	177
6. Alka	165.	34. Purbasha..	168
7. Anuradha	16	35. Purvi	166
8. Aran	178	36. Rahul	168
9. Aryan	162	37. Ravesh	170
10. Deepshikha	169	38. Rectika	164
11-Farhat	$162^{1 / 2}$	39. Rhitu	172
18. Gajendra	170	40. Ritika	168
13. Garima	168	41. Ronit	185
14. Gracy	156	42. Roshani	165
15. Gunja	156	43. Shadini 4	160
16. Harshdev	+165	44. Shubham	174
17. Heena	168	45. Shubhangi	162
18. Himangi	P6181-165 \% (6)	48. Siddhant its	171
19. Himanshi	166	47. Srishti	1658
20. Himshikha	164	48. Suman	158
21. Indrakumar	182	49. Swastik	171
22. Kaval	人, 168 तf 10 +h	50 Tanya	168
23. Kanha	165	51. Jaran	175
24. Khushboo	168	52. Tikesh	174
25. Manjeet	182		172
26. Mansi	162	54. Vikarh	175
27. Michael	176	55. Vinay	178
28. Minir.	165	56. Jash.	176

Calculation :-

Result :-
So the calculated median height of the students of the class is 168 cm .

Experiment- 6

Aim :-To calculate the Median weight of the students of class from raw data .

Introduction :-

The median is another important and widely used measure of central tendency. The median is usually defined as that value which divides the distribution so that an equal number of items occur on either side of it. In other words 50% of the observation will be smaller than the median. The data are arranged in ascending order of magnitude to find out the value of the median. If the data set contains an odd number of values, the middle one of the array is the median and if there is an even number of items, the median is the average of the middle two items.

Procedure :-

Step-1: Arrange the data in Ascending / Descending order of magnitude.
Step-2: Find the value of $(n+1) / 2$ th item or $(n / 2)$ th
Step-3 : If the number of items is even, the mean of two middle terms is taken as Median.

Observation :-

			Weight (inks)
1. Aadya io	45	29. Nikesh	65 in
2. Aakash	93	30. Nilesh	68.
3. Abhay	72	31. OnKar	64
4. Abhishek	56	32. Pallavi	531
5. Akainsha .it	30-50 ibio	33. Prashant arlf an imil	81.
6. Alka	45	34. Purbasha. hwion	64
7. Ancuradha	: 46 in mati	35. Parvi a dis.l	48
8. Arun	76	36, Rahut : -10,	75
9. Aryan	50	37. Rajesh	
10. Deepshikha	60	36. Reetika	54
11. Farhat	47	39. Rhitu	64.
12. Gavendra	55	${ }^{2} 10$, Ritika, Je 1	65.
13. Garima	49	4). Rohit inf	85
14. Gracy	45	42. Roshani	52
15. Gunia	39	43. Shalini	64
16-Harshdev	43	49. Shubham	65
17. Heena	60	45. Shubhangi	50
18. Himangi	46	46. Siddhant	5.9
19. Himanshe	56	47. Srishti	56
20. Himshikhar	47	48. Suman	49
21. Indrokkumar	62	49. Swastik	94
27. Kajal	58	50. Tanya	52.
23. Kanhía	54 10	51. Tarcen	85
24. Khushboo	52	52. Tikerh	54
25 Manject	83	53. Vasundhara	68
26. Mansil	55	54. Vikash	60.
27. MMichael	inab7	55. Vinay	77.
28. Mihir	53	56. Yash	59

Calculation :-

Calculation:-

Arrange the data in ascending order for median calculation.
$39,43,45,45,45,46,46,47,47,48,49,49,50,50,50,52$,
$52,52,52,53,53,54,54,54,55,55,56,56,56 ; 58,59,59$,
$60,60,60,62,64,64,64,64,65,65,65,68,68,72,75,76$,
$77,81,83,85,85,87,93,94$
Median $(M)=\frac{56+56}{2}=\frac{112}{2}=56 \mathrm{~kg}$

Result :-
So the calculated median weight of the students of the class is 56 kg .

Experiment- 7

Aim :-To calculate the Median height of the students of class by using class interval (continuous series) method .

Introduction:-

The median is another important and widely used measure of central tendency. The median is usually defined as that value which divides the distribution so that an equal number of items occur on either side of it. In other words 50% of the observation will be smaller than the median. The data are arranged in ascending order of magnitude to find out the value of the median. If the data set contains an odd number of values, the middle one of the array is the median and if there is an even number of items, the median is the average of the middle two items.

Procedure:-

Step-1: Make class intervals from raw data and write their (F) frequencies also.
Step-2: Find out the cumulative frequency (CF)
Step-3: Find the Median number ($\mathrm{n} / 2$) or $(\mathrm{n}+1) / 2$
Step-4: Locate the median number in the CF , the respective class will be the median class. Step-5: Calculate the median with the help of formula.

Observation :-

* observation Table:-
class interval (CI)
$155-160$
$160-165$
$165-170$
$170-175$
$175-180$
$180-185$
:---:

Calculation :-

$$
\begin{aligned}
& \text { Calculation:- } \\
& \begin{array}{rl}
\text { Median number }(M)=\frac{N}{2} & =\frac{56}{2}=28 \\
l=165 & M
\end{array}=\ell+\frac{m-c}{f} \times i \\
& c=20 \\
& f=19 \\
& \\
& i=5
\end{aligned} \quad=165+\frac{28-20}{19} \times 5 .
$$

Result :-
So the calculated median height of the students of the class is 167.10 cm

Experiment- 8

Aim :-To calculate the Median weight of the students of class by using class interval (continuous series) method .

Introduction :-

The median is another important and widely used measure of central tendency. The median is usually defined as that value which divides the distribution so that an equal number of items occur on either side of it. In other words 50% of the observation will be smaller than the median. The data are arranged in ascending order of magnitude to find out the value of the median. If the data set contains an odd number of values, the middle one of the array is the median and if there is an even number of items, the median is the average of the middle two items.

Procedure:-

Step-1: Make class intervals from raw data and write their (F) frequencies also.
Step-2: Find out the cumulative frequency (CF)
Step-3: Find the Median number ($\mathrm{n} / 2$) or $(\mathrm{n}+1) / 2$
Step-4: Locate the median number in the CF , the respective class will be the median class. Step-5: Calculate the median with the help of formula.

Observation :-

Calculation :-
Calculation:-
Median number $(m)=56 / 2=28$
$l=55$

$l=26 \quad M$	$=l+\frac{m-c}{f} \times i$
$f=17$	
$i=10$	
i	$=55+\frac{28-26}{17} \times 10$
	$=55+\frac{2}{17} \times 10=55+1.17=56.17 \mathrm{~kg}$.

Result :-

So the calculated median weight of the students of the class is 56.17 kg

Experiment- 9

Aim :-To calculate standard deviation of height of the class .

Introduction :-

Standard deviation is a statistical measure that reflects the amount of variability or dispersion in a set of data points. Higher standard deviation indicates greater variability while lower standard deviation suggest that the data points tend to be close to the mean .

Procedure:-

Step-1: Collect the data (height measurements) From all the students in a class as class intervals. (continuous series).
Step-2: Calculate the Mean height.
Step-3: Calculate the mid values (m) for each class.
Step-4: Calculate deviation (d) by subtracting the mean from each midpoint for all classes.
Step-5 : Square each of the deviations.
Step-6 : Multiply the squared deviation with respective Frequency for each class.
Step-7: Calculate standard deviation by using the formula:-

Observation :-

* Observation Table :-

(CI) Class Interval	(f) frequency	$\begin{gathered} (\bar{x}) \\ \text { Mean } \end{gathered}$	(m) midvalue	(d) deviation	squared deviation $\left(d^{2}\right)$	$f d^{2}$
155-160	4	\pm	157.5	(-10.5)	110.25	441
160-165	16	- 16	162.5	(2515)	30.25	484.
165-170	19	168	167.5	(-0.51)	0.25	4.75
170-175	+100	-130	172.5	4.5	20.25	202.5
175-180	4		177.5	9.5	90.25	361
180-185	3		182.5	14.5	210.25	630.75
$\begin{aligned} & d_{1}=157.5 \\ & d_{2}=162.5 \\ & d_{3}=167.5 \\ & d_{4}=172.5 \\ & d_{5}=177.5 \\ & d_{6}=182.5 \end{aligned}$	$-168=$ $-168=$ $-168=$ $-168=$ $-168=$ $-168=$	$\begin{aligned} & (-10 \\ = & 6-5 . \\ = & (-0 \\ & 4.5 \\ = & 9.5 \\ = & 14.5 \end{aligned}$.5) 5) .5)		$\frac{1+4}{6} 10$ ell (10) (iff) ind mad M	$\left\{f d^{2}=2124\right.$

Calculation :-

$$
\begin{aligned}
& \text { Calculation:- } \\
& \Sigma f d^{2}=2124, N=56 \quad \sigma=\sqrt{\frac{212 y}{56}}=\sqrt{37.92}=6.1579 \mathrm{~cm} .
\end{aligned}
$$

Result :-

So the calculated standard deviation of height is 6.1579 cm

Experiment- 10

Aim :-To calculate standard deviation of weight of the class .

Introduction:-

Standard deviation is a statistical measure that reflects the amount of variability or dispersion in a set of data points. Higher standard deviation indicates greater variability while lower standard deviation suggests that the data points tend to be close to the mean .

Procedure:-

Step-1: Collect the data (height measurements) From all the students in a class as class intervals. (continuous series).
Step-2: Calculate the Mean height.
Step-3: Calculate the mid values (m) for each class.
Step-4: Calculate deviation (d) by subtracting the mean from each midpoint for all classes.
Step-5 : Square each of the deviations.
Step-6 : Multiply the squared deviation with respective Frequency for each class.
Step-7: Calculate standard deviation by using the formula:-

Observation :-

Calculation :-

$$
\begin{aligned}
& \text { Calculation :- } \\
& \Sigma f d^{2}=9300, N=56 \quad \therefore \sigma=\sqrt{\frac{9300}{56}}=\sqrt{166.07}=12.8 \mathrm{~kg} .
\end{aligned}
$$

Result :-
So the calculated standard deviation of weight is 12.8 kg

Experiment- 11

Aim :-To study the ideas and concepts of probability theory through chiSquare .

Introduction:-

The theory of probability has its own origin in the games of chance related to gambling. It measures the relative frequency of a particular event happening by chance.
Probability is the likelihood of occurrence of an event. The simplest example of a classical probability experiment is a coin toss, when we toss a coin there is a 50% chance of getting a head and 50% chance of getting a tail.

Probability $=$ No. of favourable Events Total no. of events.

Procedure :-

1. Toss the coin, write all the outcomes that came during tossing the coins.
2. Write the observed and expected frequency in the separate columns
3. Minus the observed frequency from expected frequency and then square the value.
4. Divide the squared value by expected frequency or by putting in the chi-square formula, calculate the value.
5. After matching the calculated value from the chi-square tabulated value, provide the hypothesis.

Observation :-

I. Calculated value $=0.68$

$$
\text { chi-square value vat }(\alpha=0.05) \Rightarrow 3.841
$$

$\begin{gathered}\text { Tabulated } \\ v \text { value }\end{gathered}>\begin{gathered}\text { calculated } \\ \text { value }\end{gathered} \rightarrow$ nonsignificant $\left[\begin{array}{l}\text { Ho =accept } \\ H A=\text { reject }\end{array}\right]$
(means, there is no significant differences)
II. Calculated value $=6$
chi-square value at $(\alpha=0.05) \Rightarrow 5.991$
$\begin{gathered}\text { Tabulated calculated } \\ \text { value }\end{gathered}<$ significant $\quad\left[\begin{array}{l}H A=\text { accept } \\ H_{0}=\text { reject }\end{array}\right]$
(means there is significant differences)
III. Calculated value $=6.083$
chi-square value at $(\alpha=0.05)=7.815$
$\begin{aligned} & \text { Tabulated } \\ & \text { value }\end{aligned}>$ calculated $\begin{gathered}\text { value }\end{gathered}$ nonsignificant
(Means, there is no significant difference) $\quad\left[\begin{array}{l}H_{0}=\text { accept } \\ H_{A}=\text { reject }\end{array}\right]$

NOTE
$H_{0}=$ There is no significant difference
$H_{A}=$ There is significant difference.

Calculation:-

Result :-

So, before the experiment we make two assumptions.
First, $\mathrm{Ho}=$ There is no significant difference.
$\mathrm{HA}=$ There is a significant difference.
\rightarrow On the basis of our calculated chi-square value and tabulated value, we do the calculation and provide our assumption.
\rightarrow If the tabulated value is greater than the calculated value, then there are no significant differences (Ho= accept , HA= reject).
\rightarrow If the calculated value is greater than the tabulated value then there are significant differences (Ho = Reject , HA= accept) .

Experiment- 12

Aim :-To study the basic concept of T-test and method of computation.

Introduction :-

Sir William Gosset, gave a test popularly known as T-test. The test is based on Tdistribution. Gosset was employed by Guinness Brewery (Dubling, Ireland), which does not permit employees to publish research findings under their own name, hence Gosset adopted the pen name "student" and published his discoveries in 1905, under his name, thereafter, the t-test is commonly Known as student t -test. This test helps us in determining Whether observed differences between 2 samples are actually due to chance, or whether they are really significant or not.

Procedure :-

1. Separately, calculate the mean of both the samples (S1,S2).
(Mean = Sum of all observations/Total no. of observation)
2. Now, we have to calculate standard deviation for calculating this, first of all we have to calculate the deviation of each value in the sample from mean. (X-meanX)
3. Then square the value (X -mean X)2 and sum up all the values.
4. Now, put in the formula of standard deviation and calculate the value (S1 and S2) of both samples.
5. Now, we have to put all the values in the formula of T-test for a difference between two independent means.

6. Now, the value obtained is called the calculated T-test value.
7. Compare the calculated value from the tabulated Value and give a hypothesis

Observation :-

- Given Table :-

Subject	Baseline	6-week after
1	8.3	19.3
2	5.7	10.7
3	3.3	8.3
4.	4.6	9
5.	5.6	13.6
6.	2.3	9.3
7.	11.7	16.6
8	33.7	47.3
9.	3.3	9
10	1.3	18
11.	5.3	12
12.	32.3	43
13.	2	10.3
14.	0.8	7
15.	2.7	9
16	2.7	10
17.	3	7.7
18	0	23.7
19	3.7	10.3
20	4.7	15

- Observation Table :-

subject	Baseline	$x-\bar{x}$	$(x-\bar{x})^{2}$	s.no.	. 6 weeks after	r $x-\bar{x}$	$(x-\bar{x})^{2}$
1.	8.3	1.45	2.10	1.	19:3	3.85	14.82
2.	5.7	-1.15	1.32	2.	10.7	-4.75	22.56
3.	3.3	-3.55	12.60	3.	8.3	-7.15	51.12
4.	4.6	-2.25	5.06	4.	9	-6.45	41.60
5.	5.6	-1.25	1.56	5.	13.6	-1.85	3.42
6.	2.3	-4.55	20.70	6.	9.3	-6.15	37.82
7.	11.7	4.85	23.52	7.	16.6	1.15	1.32
8.	33.7	26.85	720.92	8.	47.3	31.85	1014.42
9.	3.3	-3.55	12.60	9.	9	-6.45	41.60
10.	1.3	-5.55	30.80	10.	18	2.55	5.50
II.	5.3	-1.55	2.40	11.	12	-3.45	11.90
12.	32.3	25.45	647.70	12.	43	27.55	759.
13.	2	-4.85	23.52	13.	10.3	-5.15	26.52
14	0.8	-6.05	36.60	14.	7	-8.45	71.40
15.	$2 \cdot 7$	-4.15	17.22,	15.	9	-6.45	41.60
16.	2.7	-4.15	17.22	16.	10	-5.45	29.70
17.	3	-3.85	14.82	17.	7.7	-7.75	60.06
18.	0	-6.85	46.92	18.	23.7	8.25	68.06
19.	3.7	-3.15	9.92	19.	10.3	-5.15	26.52
20.	4.7	-2.15	4.62	20.	15	-0.45	0.20
Total.	$\begin{aligned} & \text { mean } \\ & x \\ & =6.85 \end{aligned}$		1652.12		$\begin{aligned} & \text { mean } \\ & (x) \\ & =15.45 \end{aligned}$		2330.14

Calculation :-

Calculation:-

- standard deviation of first group, $s_{1}=\sqrt{\frac{s(x-\bar{x})^{2}}{n-1}}$

$$
S_{1}=\sqrt{\frac{1652.12}{19}}=\sqrt{86.95}=9.32
$$

- Mean of first group :- $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\ldots x_{20}}{n}$:

$$
\bar{x}_{1}=\frac{8.3+5.7+3.3+4.6+\cdots+4.7}{20}=\frac{137}{20}=6.85 .
$$

- Standard deviation of second group. $S_{2}=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}$

$$
s_{2}=\sqrt{\frac{2330.14}{19}}=\sqrt{122.63}=11.07
$$

- Mean of second group:- $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\ldots .+x_{n}}{n}$

$$
\bar{x}_{2}=\frac{19.3+10.7+8.3+9+\ldots \ldots+15}{20}=\frac{309.1}{20}=15.45
$$

T-Test Formula :-

$$
t=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

$\Rightarrow t=\frac{6.85-15.45}{\sqrt{\frac{(9.32)^{2}}{20}+\frac{(11.07)^{2}}{20}}}$
$\Rightarrow t=\frac{-8.6}{\sqrt{4.34+6.12}}$
$\Rightarrow t=\frac{-8.6}{\sqrt{10.46}}=\frac{-8.6}{3.2}$
$\Rightarrow t=-2.68 \approx 2.68$

Result :-
calculated value $=2.68$
(one-Tailed) Tabulated value $=2.09$ (At $t=19, d=0.05)$
(calculated value > Tabulated value.)
There is a significant difference.
HA = Accept
Ho $=$ Reject.

