1.1.2

List of Employability/ Entrepreneurship/ Skill Development Courses with Course Contents

Colour Codes					
Employability Contents	Green				
Entrepreneurship Contents	Light Blue				
Skill Development Contents	Pink				
Name of the Subjects/Related to all three Components (Employability/ Entrepreneurship/ Skill Development)	Yellow				

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

List of Courses Focus on Employability/Entrepreneurship/ Skill Development

Department : Civil Engineering

Programme Name : M.Tech.

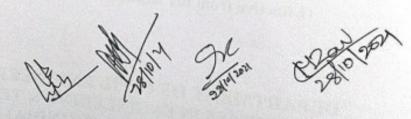
Academic Year: 2021-22

List of Courses Focus on Employability/Entrepreneurship/Skill Development

Sr. No.	Course Code	Name of the Course
01.	CEPATT1	ADVANCED STRUCTURAL ANALYSIS
02.	CEPATT2	ADVANCED SOLID MECHANICS
03.	CEPATP3	THEORY OF STRUCTURAL STABILITY
04.	CEPATP7	ADVANCE CONCRETE TECHNOLOGY
05.	CEPATP8	ADVANCED STEEL DESIGN
06.	CEPALT1	ADVANCED CONCRETE LAB
07.	IPPATC1	RESEARCH METHODOLOGY AND IPR
08.	CEPBTT1	FEM IN STRUCTURAL ENGINEERING
09.	CEPBTT2	STRUCTURAL DYNAMICS
10.	CEPBTP3	SOIL STRUCTURE INTERACTION
11.	CEPBTP7	FRACTURE MECHANICS OF CONCRETE STRUCTURES
12.	MEPBTO5	COMPOSITE MATERIALS
13.	CEPBLT1	COMPUTER APPLICATIONS LAB
14.	CEPBPT1	MINI PROJECT
15.	PEPBTX2	DISASTER MANAGEMENT

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Scheme and Syllabus


DEPAREMENT OF CIVIL ENGINEERING SCHOOL OF STUDIES IN ENGINEERING & TECHNOLOGY, GGV, BILASPUR, C.G. (INDEX)

SCHEME OF EXAMINATION

M. LECH, STRUCTURAL ENGINEERING

M. Tech. 1-Semester

Г	T .	Т	Subjects	P	eriod	ls/W	eek	ı	Evalu	ation	Credits
SI	. Course Type/ Code		Subjects	1		т	Р	IA	ESI	Total	
1.	CEPATT	1	Advanced Structural Analysis	3		0	0	40	60	100	3
2.	CEPATT	2 -	Advanced Solid Mechanics	3		0	0	40	60	100	3
3.	CEPATP2 CEPATP3	2 2.	Elective – 1 Theory of Thin Plates and Shells Theory and Applications of Cement Composites Theory of Structural Stability	3		0	0	40	60	100	3
	CEPATP4 CEPATP5 CEPATP6 CEPATP7	1. 2. 3.	Elective – II Analytical and Numerical Methods for Structural Engg. Structural Health Monitoring, Repairs and Rehabilitation of Structures Structural Optimization Advance Concrete Technology	3	0		0 4	40	60	100	3
0	CEPATPS CEPATPS CEPATPS CEPATPS	1. A 2. D 3. D	Elective – III Advanced Steel Design Design of Formwork Design of High-Rise Structures ridge Engineering	3	0	0	4	0	60	100	3
	EPALT1		Advanced Concrete Lab	0	0	3	1	+	+	-	
I	PPATCI	Rese	earch Methodology and IPR	2	0	-	3(4	20	50	2
			Total			0	1-	1	50	50	2
			O'CLOSTON CO. O.	17	0	3	230	3	70	600	19

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

M.Tech. H.Semester

SI.			Periods/Week			E	Credits		
	Type/ Code		I.	T	þ	IA	ESE	Total	
1.	CEPBTT1	FEM in Structural Engineering	3	0	0	40	60	100	3
2.	СЕРВ ГТ2	Structural Dynamics	3	0	0	40	60	100	3
3.	СЕРВТР1 СЕРВТР2	Elective - IV 1. Design of Advanced Concrete Structures 2. Advanced Design of Foundations	3	0	0	40	60	100	3
	CEPBTP3	3. Soil Structure Interaction							14.
	CEPBTP4	4. Design of Industrial Structure	2		-		-		-
1.	СЕРВТР5	Elective – V 1. Advanced Prestressed Concrete	3	0	0	40	60	100	3
	CEPBTP7	2. Laminated Composite Plates 3. Fracture Mechanics of Concrete Structures							6
4	CEPBTP8	4. Design of Plates and Shells		-	-	-	-	-	-
		Open Elective	3	0	0	40	60	100	3
	MSPBTO1 IPPBTO2 IPPBTO3 CEPBTO4	Business Analytics Industrial Safety Operations Research Cost Management of Engineering Projects (Other					15		
	CHPBTO6	than Civil Engg.) 5. Composite Materials	1				1		1
1	ECPBTO7	6. Waste to Energy	8	1			1		1
	МСРВТО8	7, IoT 8. MOOCs				,			
	CEPBLT1	Computer Applications Lab	0	0	3	30	20	50	2
1	CEPBPT1	Mini Project	0	0	4	30	20	50	2
	ELPBTX1	Audit Course/Value Added Course 1. English for Research Paper Writing	2	0	0	40	60	100	2
	PEPBTX2 CEPBTX3 LAPBTX4	Disaster Management Constitution of India Stress Management by Yoga			(a)				
		Total	17	0	(08)	300	400	700	21

Note: Under MOOCs the students have to opt any subject other than Civil Engineering from

NPTEL/UGC SWAYAM

African

Quantities of GAL successing dura Shall see Web way dynlays

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

M. Tech. Structural Engineering

Semester-L

 Subject:
 Advanced Structural Analysis
 Credits

 Type:
 Core-I
 L T P Total

 Teaching Scheme:
 Lectures: 3 hours/week
 3 0 0 3

Course Objectives: The course is aimed

To impart knowledge on the analysis of structures by stiffness analysis.

2 To introduce the limitations of direct stiffness method.

Course outcomes: At the end of the course, students will be able to

Analyze the skeleton structures using stiffness analysis code.

2 Use direct stiffness method understanding its limitations

Syllabus Contents:

- Influence Coefficients: Physical Significance, Effects of Settlements, Temperature Change and Lack of Fit, Member Approach and Structure Approach.
- Stiffness Method applied to Large Frames: Local Coordinates and Global Coordinates.
- Stiffness Matrix Assembly of Structures: Stiffness Matrix in Global Coordinates, Boundary Conditions, Solution of Stiffness Matrix Equations, Calculation of Reactions and Member Forces.
- Applications to Simple Problems: Beams, Plane Trusses, Plane Rigid Jointed Frames and Grids by Structure Approach and Member Approach.
- Boundary Value Problems (BVP): Approximate Solution of Boundary Value Problems, Modified Galerkin Method for One-Dimensional BVP, Matrix Formulation of the Modified Galerkin Method.
- Linear Element: Shape Functions, Solution for Poisson's Equation, General One Dimensional Equilibrium Problem.

References:

- Matrix Analysis of Framed Structures, Weaver and Gere.
- The Finite Element Method, Lewis P. E. and WardJ. P., Addison-Wesley Publication Co.
- · Computer Methods in Structural Analysis, MeckJ. L., E and FN, Span Publication.
- · The Finite Element Method, Desai and Able, CBS Publication.

Organit se ant of Cyll Engineering Guru Ghataidas Yahwayis yahiya Elibapur (C.G.)

Pange 5 of 47

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Advanced Solid Mechanics

Subject:

Type Teaching Scheme: Acctures: 3 nours/week Credits P Total

Course Objectives: The course is nimed To introduce the basic concepts and problems of elasticity and plasticity.

- To Emphasize on numerical methods to solve continuum problems

Course outcomes: At the end of the course, students will be able to 1 Solve simple problems of elasticity and plasticity understanding the basic concepts.

- Apply numerical methods to solve continuum problems

Syllabus Contents:

- Introduction to Elasticity: Displacement, Strain and Stress Fields, Constitutive Relations,
- Strain and Stress Field: Elementary Concept of Strain, Stain at a Point, Principal Strains and Principal Axes, Compatibility Conditions, Stress at a Point, Stress Components on an Arbitrary Plane. Differential Equations of Equilibrium, Hydrostatic and Deviatoric
- Equations of Elasticity: Equations of Equilibrium, Stress- Strain relations, Strain Displacement and Compatibility Relations, Boundary Value Problems, Co-axiality of the
- Two-Dimensional Problems of Elasticity: Plane Stress and Plane Strain Problems, Airy's stress Function, Two-Dimensional Problems in Polar Coordinates.
- Torsion of Prismatic Bars: Saint Venant's Method, Prandtl's Membrane Analogy, Torsion of Rectangular Bar, Torsion of Thin Tubes.
- Plastic Deformation: Strain Hardening, Idealized Stress- Strain curve, Yield Criteria, von Mises Yield Criterion, Tresca Yield Criterion, Plastic Stress-Strain Relations, Principle of Normality and Plastic Potential, Isotropic Hardening.

References:

- Theory of Elasticity, Timoshenko S. and Goodier J. N., McGraw Hill, 1961.
- Elasticity, Sadd M. H. Elsevier, 2005.
- Engineering Solid Mechanics, Ragab A. R., Bayoumi S.E., CRC Press, 1999.
- Computational Elasticity, Ameen M., Narosa, 2005.
- Solid Mechanics, Kuzimi S. M. A., Tata McGraw Hill, 1994.
- Advanced Mechanics of Solids, Srinath L.S., Tata McGraw Hill, 2000.

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Subject:	Theory of Structural Stability
----------	--------------------------------

Type:

Program Elective (1)

Teaching Scheme: Lectures: 3 hours week

Credits

P. Tetal

0 3

Course Objectives: The course is aimed

- To learn the concepts to evaluate stability of columns, frames, beams and plates
- To emphasize the stability criteria for discrete and continuous systems

Course outcomes: At the end of the course, students will be able to

- Determine stability of columns and frames
- 2 Determine stability of beams and plates
- 3 Use stability criteria and concepts for analysing discrete and continuous sys tems

Syllabus Contents:

- Criteria for Design of Structures: Stability, Strength, and Stiffness, Classical Concept of Stability of Discrete and Continuous Systems, Linear and nonlinear behaviour.
- Stability of Columns: Axial and Flexural Buckling, Lateral Bracing of Columns, Combined Axial, Flexural and Torsion Buckling.
- Stability of Frames: Member Buckling versus Global Buckling, Slenderness Ratio of Frame Members.
- Stability of Beams: lateral torsion buckling.
- Stability of Plates: axial flexural buckling, shear flexural buckling, buckling under combined loads.
- Introduction to Inclastic Buckling and Dynamic Stability.

References:

Theory of elastic stability, Timoshenko and Gere, Tata Mc Graw Hill, 1981

Jan M

- Principles of Structural Stability Theory, Alexander Chajes, Prentice Hall, New Jersey.
- Structural Stability of columns and plates, Iyengar, N. G. R., Eastern west press Pvt. Ltd.
- Strength of Metal Structures, Bleich F. Bucking, Tata McGraw Hill, New York

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Subject:	Advance Concrete Technology	Credits					
Type:	Program Elective (II)	Ĺ	1.	2	Total		
Teaching Scheme:	Lectures; 3 nours/week	3	0	0	2		

Course Objectives: The course is aimed

- 1 To make students understand concrete admixtures, non-destructive testing, sem i-destructive testing, special concrete.
- 2 To familiarize students with structure of hydrated cement paste, types of content, coment production quality control.
- 3 To make students learn transition zone in concrete, measurement of workability, properties of concrete, concrete mix design
- 4 To make students understand eauses of concrete deterioration, permeability of concrete, durability of concrete, alkali aggregation reaction.

Course outcomes: At the end of the course, students will be able to

- To understand concrete technology, admixtures, non-destructive testing, semi des tructive testing, special concrete.
- 2 To be familiar with structure of hydrated cement paste, types of cement, cement production quality control.
- 3 To learn transition zone in concrete, measurement of workability, proporties of concrete, rheological behaviour of concrete, economic concrete mix design
- 4 To be exposed to strength-porosity relationship, failure modes in concrete, elastic behaviour in concrete, ageing properties and long term behaviour
- 5 To better understand the causes of concrete deterioration, permeability of concrete, durability of concrete, alkali aggregation reaction.

Syllabus Contents:

Introduction to concrete – Mineral and chemical admixtures – Structure of hydrated cement paste – Calcium Aluminate Cement – Cement Production quality control - Transition zone in concrete – measurement of workability by quantitative empirical methods – concrete properties: setting and hardening.

Concrete Design mix for higher grades. Strength-Porosity relationship — Failure modes in concrete — plastic and thermal cracking — maturity concept to estimate curing duration - Elastic behavior in concrete- Creep, shrinkage and thermal properties of concrete.

Classification of causes of concrete deterioration - Permeability of concrete - charability concept: pore structure and transport process - Alkali-aggregate reactivity.

Non-Destructive testing methods - Semi-destructive testing methods. Concreting under special circumstances - Special materials in construction - Concreting machinery and equipment - Sustainability in concrete - Future trends in concrete technology

References:

 P. Kumar Metha and Paulo J. M. Monteiro., Concrete: Microstructure, Properties and Materials, Mc Graw Hill, Fourth Edition, 2014.

John Newman and Ban Seng Choo, Advanced Concrete Technology Part 1 to 4, utterworth-

Geru Gha dis 15 heariffair (

Page 13 of 47

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Subject:		Advanced	Steel	Design

Total

Type:

Program Elective (III)

3 3

Credits

Teaching Scheme: Lectures: 3 hours/week

Course Objectives: The course is aimed

- To recognize limit states and failure modes in structural steel members and systems
- To study the design specification and codes for steel structures, and understand their basis in mechanics, testing, and analysis.
- To learn the design of steel and composite members and connections with an understanding of their limit states / failure modes and current design specifications / codes.

Course outcomes: At the end of the course, students will be able to

- Design steel structures/ components by different design processes
- Analyze and design beams and columns for stability and strength, and drift.
- Design welded and bolted connections

Syllabus Contents:

- Properties of Steel: Mechanical Properties, Hysteresis, Ductility. Hot Rolled Sections: compactness and non-compactness, slenderness, residual stresses
- Design of Steel Structures; Inelastic Bending Curvature, Plastic Moments, Design Criteria. Stability, Strength, Drift.
- Stability of Beams: Local Buckling of Compression Flange & Web, Lateral Torsional Buckling.
- Stability of Columns: Slenderness Ratio, Local Buckling of Flanges and Web, Bracing of Column about Weak Axis.
- Method of Designs: Allowable Stress Design, Plastic Design, Load and Resistance Factor
- Strength Criteria: Beams Flexure, Shear, Torsion, Columns Moment Magnification Factor, Effective Length, PM Interaction, Biaxial Bending, Joint Panel Zones.
- Drift Criteria: P Effect, Deformation Based Design;
- Connections: Welded, Bolted, Location Beam Column, Column Foundation, Splices.

References:

- Design of Steel Structures Vol. II, Ramchandra. Standard Book House, Delhi.
- Design of Steel Structures Arya A. S., Ajmani J. L., Nemchand and Bros., Roorkee.
- The Steel Skeleton- Vol. II, Plastic Behaviour and Design Baker J. F., Horne M. R., Heyman J., ELBS.
- Plastic Methods of Structural Analysis, Neal B. G., Chapman and Hall London.
- IS 800: 2007 General Construction in Steel Code of Practice, BIS, 2007.
- SP 6 Handbook of Structural Steel Detailing, BIS,1987

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Subject:

Advance Concrete Lab

Credits

Type:

Core Lab (1)

P Total

Teaching Scheme: Lectures: 2 hours/week

2

Course Objectives: The course is aimed

- To learn the design of high grade concrete and study the planameters affecting its performance.
- To conduct Non Destructive Tests on existing concrete structures.
- To understand behavior of structural/ elements.

Course outcomes: At the end of the Lab, students will be able to

- Design high grade concrete and study the purmineters affecting its perf formance.
- 2 Conduct Non Destructive Tests on existing concrete structures.
- Apply engineering principles to understand behavior of structural/ elements.

List of Experiments/Assignments:

- 1. Study of stress-strain curve of high strength concrete, Correlation between cube strength, cylinder strength, split tensile strength and modulus of rupture.
- 2. Effect of cyclic loading on steel.
- 3. Non-Destructive testing of existing concrete members.
- 4. Behavior of Beams under flexure, Shear and Torsion.

References:

- Properties of Concrete, Neville A. M., 5th Edition, Prentice Hall, 2012_
- Concrete Technology, Sherty M. S., S. Chand and Co., 2006.

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur – 495009 (C.G.)

Research	Methodology	and	IPR
Research	VI6tuogo. e.		

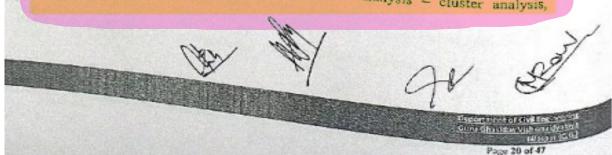
Credits P Total 2 0 2

Subject: Type:

MLK

Teaching Scheme: Lectures: 2 bears week

Course Objectives: The course is aimed


- To understand the research problem formulation.
- To study and analyze the research related information
- To learn the research ethics, implement IR and understanding research problems

Course outcomes: At the end of the course, students will be able to

- Understand research problem formulation for implementtion.
- Analyze the research related information and summarize the results 2
- Learn and Follow the research ethics 3
- Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property
- Right to be promoted among students in general & engineering in particular,
- Understand research problem formulation.

Syllabus Contents:

- Introduction and Design of research: Meaning, objectives and significance of research, types and parameters of research, research process, identification and definition of the research problem, definition of construct and variables, pure and applied research design, exploratory and descriptive design methodology, qualitative vs. quantitative research methodology, field studies, field experiments vs. laboratory experiments, research design in social and physical sciences.
- Data and Methods of Data Collection: Survey, assessment and analysis: data collection, primary and secondary sources of data, Collection of primary data through questionnaire and schedules. Collection of secondary data, processing and analysis of data. Sample survey, simple random sampling, stratified random sampling, systematic sampling, cluster sampling, area sampling and multistage sampling. Pilot survey, scaling techniques, validity & reliability.
- Data Analysis: Procedure for testing of hypothesis, the null hypothesis, determining levels of significance, type i and ii errors, grouped data distribution, measures of central tendency, measures of spread/dispersion, normal distribution, analysis of variance: one way, two way, thi square test and its application, students "T" distribution, non-parametric statistical techniques, binomial test. Correlation and regression analysis - discriminate analysis - factor analysis - cluster analysis,

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

- Research report preparation and presentation: Review of literature: historical survey
 and its necessity, layout of research plan, meaning, techniques and precautions of
 interpretation, types of report: technical report, popular report, report writing layout
 of research report, mechanics of writing a research report. Writing bi bliography and
 references.
- Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

References:

- Research in education, By J W Best and J V Kahn, Pearson/ Allyn and Bacon.
- Research Methodology Methods and Techniques, C K Koth ari, New Age International.
- Design and Analysis of Experiments, D C Montgomery, Wiley.
- Applied Statistics & Probability for Engineers, D C Montgomery & G C Runger, Wiley.
- Management Research Methodology: Integration of Principles, Methods and Techniques, K N Krishnaswamy, A I Sivakumar and M Mathiranjan, Pearson Education.

Department Selections

GREGORIEM When LEGISL

Page 21 of 77

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur – 495009 (C.G.)

Semester-II

Finite Element Method in Structural Engg.

Credits Γ. P Total 3

D

3

0

Subject:

Cure (III)

Type:

Teaching Scheme: Lectures: 3 hours/week

Course Objectives: The course is nimed

- To introduce the Finite Element Method for structural analysis.
- To practice the Finite Element Program/ Software
- To study the solutions for continuum problems using finite element analysis.

Course outcomes: At the end of the course, students will be able to

- Use Finite Element Method for structural analysis.
- Execute the Finite Element Program/ Software
- Solve continuum problems using finite element analysis.

Syllabus Contents:

- Introduction: History and Applications. Spring and Bar Elements, Minimum Potential Energy Principle, Direct Stiffness Method, Nodal Equifibrium equations, Assembly of Global Stiffness Matrix, Element Strain and Stress.
- Beam Elements: Flexure Element, Element Stiffness Matrix, Element Load Vector.
- Method of Weighted Residuals: Galerkin Finite Element Method, Application to Structural Elements, Interpolation Functions, Compatibility and Completeness Requirements, Polynomial Forms, Applications.
- Types: Triangular Elements, Rectangular Elements, Three-Dimensional Elements, Isoperemetric Formulation, Axi-Symmetric Elements, Numerical Integration, Gaussian Quadrature.
- Application to Solid Mechanics: Plane Stress, CST Element, Plane Strain Rectangular Element, Isoparametric Formulation of the Plane Quadrilateral Element, Axi- Symmetric Stress Analysis, Strain and Stress Computations.
- Computer Implementation of FEM procedure, Pre-Processing, Solution, Post-Processing,

- Finite Element Analysis, Seshu P., Prentice-Hall of India, 2005. Concepts and Applications of Finite Element Analysis, Cook R. D., Wiley J., New York,
- Fundamentals of Finite Element Analysis, Hutton David, Mc-Graw Hill, 2004.

- Finite Element Analysis, Buchanan G.R., McGraw Hill Publications, New York, 1995. Finite Element Method, Zienkiewicz O.C. & Taylor R.L. Vol. I, II & III, Elsevier, 2000. Finite Element Methods in Engineering, Belegundu A.D., Chandrupatla, T.R., Prentice Hall

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

	Structural Dynamics		Credit		s	
Core (IV)		1.	L	Т	P	Total
Lectures: 3 bus	ins/week		3.	0	0	3
		SECTION AND SECTION AND ADDRESS OF THE PARTY	Core (IV)	Core (IV)	Core (IV)	Core (IV) L T P

Course Objectives: The course is aimed

- To study the analysis of dynamics response of single degree freedom system using fundamental Theory and equation of motion.
- 2 To analyze and study the dynamics response of Multi degree freedom system using fundamental theory and equation of motion.
- To study the use of the available software for dynamic analysis.

Course outcomies: At the end of the course, students will be able to

- Analyze and study dynamics response of single degree freedom system using fundamental.
 Theory and equation of motion.
- 2 Analyze and study dynamics response of Multi degree freedom system using fundamental theory and equation of motion.
- 3 Use the available software for dynamic analysis.

Syllabus Contents:

- Introduction: Objectives, Importance of Vibration Analysis, Nature of Exciting Forces, Mathematical Modeling of Dynamic Systems.
- Single Degree of Freedom System: Free andForced Vibration with and without Damping, Response to Harmonic Loading, Response to General Dynamic Loading using Duhamel's Integral, Fourier Analysis for Periodic Loading, State Space Solution for Response.
- Numerical Solution to Response using Newmark Method and Wilson Method, Numerical Solution for State Space Response using Direct Integration.
- Multiple Degree of Freedom System (Lumpod parameter): Two Degree of Freedom System, Multiple Degree of Freedom System, Inverse Iteration Method for Determination of Natural Frequencies and Mode Shapes, Dynamic Response by Modal Superposition Method, Direct Integration of Equation of Motion.
- Multiple Degree of Freedom System (Distributed Mass and Load): Sirigle Span Beams,
 Free and Forced Vibration, Generalized Single Degree of Freedom System.
- Special Topics in Structural Dynamics(Concepts only): Dynamic Effects of Wind Loading, Moving Loads, Vibrations caused by Traffic, Blasting and Pile Driving, Foundations for Industrial Machinery, Base Isolation.

References:

- · Dynamics of Structures, Clough R. W. and Penzien J., Mc Graw Hill.
- · Structural Dynamics and Introduction to Earthquake Engineering, Chopra A. K.
- Vibration of Structures Application in Civil Engineering Design, Smith J. W., Chapman and Hall.
- Dynamics of Structures, Humar J. L., Prentice Hall.
- Structural Dynamics Theory and Computation, Paz Mario, CBS Publication.
- Dynamics of Structures, Hart and Wong.

Department of Gwiffred paying Gara Chandles Voltered division

Page 23 of 47

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Soil Structure Interaction

Credits T L Total 3

Subject:

Program Elective (IV)

Турс: Teaching Scheme: Lectures: 3 hours/week

Course Objectives: The course is aimed

- To study the soil structure interaction and the computer programs for interaction problems
- To learn the analysis of different types of frame structure and evaluate the action of group piles considering stress-strain characteristics of soils.

Course outcomes: At the end of the course, students will be able to

- Understand soil structure interaction concept and complexities involved to evaluate soil structure interaction for different types of structure under various conditions of loading and subsoil characteristics
- 2 Prepare comprehensive design oriented computer programs for interaction problems based on theory of sub grade reaction such as beams, footings, rafts etc.
- 3 Analyze different types of frame structure founded on stratified natural deposits with linear and non-linear stress-strain characteristics.
- 4 Evaluate action of group of piles considering stress-strain characteristics of real soils.

Syllabus Contents:

- Critical Study of Conventional Methods of Foundation Design, Nature and Complexities of Soil Structure Interaction.
- Application of Advanced Techniques of Analysis such as FEM and Finite Difference Method.
- Relaxation and Interaction for the Evaluation of Soil Structure Interaction for Different Types of Structure under various Conditions of Loading and Subsoil Characteristics.
- Preparation of Comprehensive Design Oriented Computer Programs for Specific Problems,
- Interaction Problems based on Theory of Sub Grade Reaction Such as Beams, Footings, Rafts, Etc.
- Analysis of Different Types of Frame Structures Founded on Stratified Natural Deposits with Linear and Non-Linear Stress-Strain Characteristics
- Determination of Pile Capacities and Negative Skin Friction, Action of Group of Piles Considering Stress-Strain Characteristics of Real Soils, Anchor Piles and Determination of Pullout Resistance.

References:

- Analytical and Computer Methods in Foundation, Bowels J.E., McGraw Hill Book Co.,
- Numerical Methods in Geotechnical Engineering, Desai C.S. and Christian J.T., McGraw
- Soil Structure Interaction The real behaviour of structures, Institution of Structural
- Elastic Analysis of Soil Foundation Interaction, Developments in Geotechnical Engg. Vol-Elastic Analysis of Soil-Foundation Interaction, Selvadurai A.P.S., Elsevier Scientific
- Analysis & Design of substructures, Swami Saran, Oxford & IBH Publishing Co. Pvt. Ltd. Design of Foundation Systems Principles & Practices, Kurian N. P., Narosa Publishing

Page 26 of 47

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur – 495009 (C.G.)

	Fracture Mechanics of Concrete Structures		Credits				
Subject:	Fracture Mechanics & Con-	L	Т	P	Total		
Type:	Program Elective (V)	3	0				
Teaching Scheme:	Lectures: 3 hours/week			_			

- To study the identification and the classification of cracking of concrete structures based on Course Objectives: The course is aimed
- To study the Implementation of stress intensity factor for notched members
- To introduce the application of fracture mechanics models to high strength concrete and 2

Course outcomes: At the end of the course, students will be able to

- Identify and classify cracking of concrete structures based on fracture mechanics.
- Implement stress intensity factor for notched members 2
- Apply fracture mechanics models to high strength concrete and FRC structures. 3
- Compute J-integral for various sections understanding the concepts of LEFM.

Syllabus Contents:

Review of theory of elasticity: Body and surface forces, strain and strain tensors, equilibrium equation, compatibility condition, plane stress, plane strain, Airy stress function, polar coordinate system.

Basic modes of fracture, an atomic view of fracture, stress concentration effect of flaws, Griffith theory of brittle fracture, Irwin's modifications for clastic-plastic materials, dimensional analysis of fracture mechanics.

Theories of linear clastic fracture mechanics, stress intensity factors, Fracture toughness, Energy release rate, Critical Energy release rate, Crack month opening displacement, R-Curve and J

Tensile Behavior of Concrete, Strain localization effect, Fracture process zone, Nonlinear behavior of concrete, softening function of concrete, Fracture energy.

Definition and brief introduction of fracture parameters of various nonlinear concrete fracture models: cohesive crack model (CCM) or fictitious crack model (FCM), crack band model (CBM), two parameter fracture model (TPFM), size effect model (SEM), effective crack model (ECM), double-K fracture model (DKFM) and double-G fracture model (DGFM).

- David Brock, Elementary Engineering Fracture Mechanics, Sijthoff and Noordhaff, Alphen
- Analysis of Concrete Structure by Fracture Mechanics, Ed L. Elfgren and S.P. Shah, Proc of Rilem Workshop, Chapman and Hall, London, 2001.
- Prashant Kumar, Elements of Fracture Mechanics, Tata McGraw Hill, New
- Delhi, India, 2009. K. Ramesh, e-Book on Engineering Fracture Mechanics, IIT Madras, Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, India, 5th
- Anderson, : Fracture Mechanics: Fundamentals and Applications, CRC press, 3rd Ed., 2005 Kumar S, Barai SV (2011) Concrete Fracture Models and Applications. ISBN

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur – 495009 (C.G.)

Subject:

Composite Materials

Credits

Type:

Open Elective

Total

Teaching Scheme: Tectures: 3 hours/week

Course Objectives: The course is aimed

- To study the implementation of the composite materials for the required performance and adopt the composite materials as reinforcements
- 2 To study the methods of manufacturing of meta, matrix composites
- To study the strength of laminates

Course outcomes: At the end of the course, students will be able to

- Explain and also implement the composite materials for the required performance based on the characteristics.
- 2 Adopt the composite materials as reinforcements.
- Implement the methods of manufacturing of metal matrix composites
- Adopt the methods of manufacturing of polynier matrix composites
- 5 Evaluate the strength of laminates.

Syllabus Contents:

- INTRODUCTION: Definition ~ Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall
- REINFORCEMENTS: Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevler fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.
- Manufacturing of Metal Matrix Composites: Casting Solid State diffusion technique, Cladding - Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration - Liquid phase sintering. Manufacturing of Carbon - Carbon composites: Knitting, Braiding, Weaving. Properties and applications.
- Manufacturing of Polymer Matrix Composites: Preparation of Moulding compounds and prepregs - hand tayup method - Autoclave method - Filament winding method -Compression moulding - Reaction injection moulding. Properties and applications.
- Strength: Luminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength

References:

- Material Science and Technology Vol 13 Composites by R. W. Cahn VCH, West
- Materials Science and Engineering, An introduction, WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.
- Hand Book of Composite Materials-ed-Lubin. Composite Materials - K.K.Chawla.
- Composite Materials Science and Applications Deborah D.L. Chung. Composite Materials Design and Applications - Danial Gay, Suong V. Hoa, and Stephen

Blispur (Cris)

Page 36 of 47

Guru Ghasidas Vishwavidyalaya

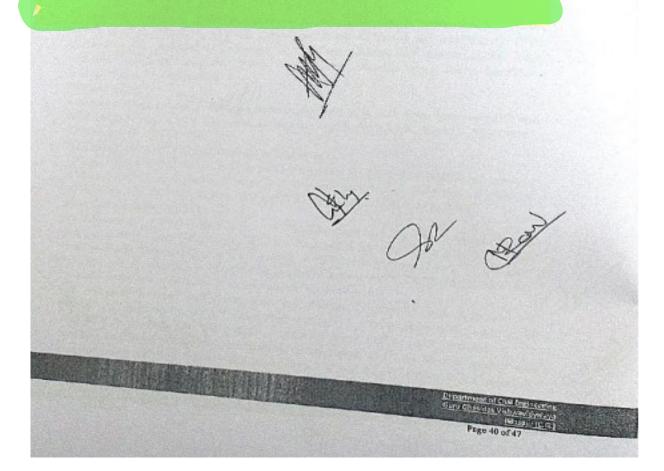
(A Central University Established by the Central Universities Act 2009 No. 25 of 2009) $\,$

Koni, Bilaspur - 495009 (C.G.)

Subject:	Computer Applications Lab	Credits						
Type:	Core Lab I(II)	L	T	P	Tota			
Teaching Scheme:	Lectures: 2 hours/week	0	0	4	2			

Course Objectives: The course is almed

- To introduce the practical development of computer programs for the analysis of structural elements based on FEM
- 2 To introduce the use of software for the design of multi-storey building


Course outcomes: At the end of the course, students will be able to

- Develop the computer programs for analysis of structural elements based on FEM
- 2 Use the design software for the design of multi-storey buildings

Syllabus Contents:

To develop the MATLAB applications for Finite Element Method on structural analysis

- Static and Dynamic Analysis of Beam, rigid frame and truss, 3-D Analysis of simple building
- Analysis, Design and Detail complete Multi-Storey Framed Buildings using STAAD Pro/ETABs.

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Subject:

Mini Project

Credits

0

U

Type:

Core

Teaching Scheme: Practice 4 hours//week (Contact: 2 hours/week)

L T P Total

Course Objectives: The Mini Project is aimed

- To Identify structural engineering problems reviewing available literature.
- 2 To Study different techniques used to analyze complex structural systems.
- 3 Work on the solutions given and present solution by using his/her technique applying Engineering principles.

Course outcomes: At the end of the course, students will be able to

- I Identify methods for structural engineering problems reviewing available literature.
- 2 Adopt different techniques used to analyze complex structural systems.
- 3 Propose solutions, or give solutions or present a solution by using his/her technique applying Engineering principles.

Syllabus Content:

- Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.
- End semester presentation should be done along with the report on identification of topic
 for the work and the methodology adopted involving scientific research, collection and
 analysis of data, determining solutions highlighting individuals' contribution.
- Continuous assessment of Mini Project at Mid Sem and Bad Sem will be mornitored by the departmental committee.

Ory

County County of the City of the County County of the City of the

Frige 41 of 47

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur – 495009 (C.G.)

Subject:

Disaster Management

Credity

Турст

Aud I/Value Added Course

P. Total

feathing Scheme: 1 actures: 2 hours/week

Course Objectives: The course is almed

- To attempt the understanding of key concepts in disaster risk recine tion and humanitarian
- To study the distaster risk reduction and humanitarian response policy and practice from
- To study the standards of humanitarian response and practical relevance in specific types of

Course outcomes: At the end of the course, students will be able to

- Learn to demonstrate a critical understanding of key concepts in discuster risk reduction and humanitarian response,
- 2 Critically evaluate disaster risk reduction and humanitaries response policy and practice from multiple perspectives
- 3 Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations and understand, the strengths and weaknesses of disaster management approaches

Syllabus Contents:

- Introduction Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude
- Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Vol canisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-rade disaster: Nuclear Reactor Meitdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.
- Disaster Prone Areas in India, Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with special reference to Tsunami; Post-Disaster Diseases and Epidemics.
- Disaster Preparedness and Management: Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Rexnete Sensing, Data from Meteorological and other agencies, Media Reports: Governmental and Community
- Risk Assessment: Disaster Risk: Concept and Elements, Disaster Risk. Reduction, Global and National Disaster Risk Situation, Techniques of Risk Assess ment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.
- Disaster Mitigation: Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation in India.

References:

R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies". New Royal book Company.

Sahni, Pardeep Et. al. (Eds.)," Disaster Mitigation Experiences And Remlections", Prentice

Hall of India, New Delhi.

Goel S. L., Disaster Administration and Management Text and Ca se Studies" &Deep Publication Pvt. Ltd., New Delhi.