
M.Sc. (Electronics)

Semester- II

Microprocessors and Microcontrollers (Core)

List Of Experiments

1. To ADD two Binary numbers each 8 Bytes long.

2. To find the maximum no. in a given string (16 bytes long) and store it in location

0510.

3. To sort a string of a no. of bytes in descending order.

4. To multiply an ASCII string of eight numbers by a single ASCII digit. The result is

a string of unpacked BCD digits.

5. To Divide a string of unpacked ASCII digits.

6. A data string of no. of bytes (to be specified in CX reg.) is located from the starting

address 0500. This data string is to be converted to its equivalent 2’S complement

form and the result is to be stored from 0600 onwards.

7. Flashing display of superb on seven segment display on executing this program

from address 2000h, "superb" mes- sage flashes on the display of the kit.

8. Addition of 2 numbers and stored result at 3012 address.

9. Subtraction of 2 numbers and stored result at 3012 address.

10. Division of 2 numbers and stored result at 3012 address.

11. Multiplecation of 2 numbers and stored result at 3012 address.

MICROPROCESSOR 8086

INTEL 8086 ASSEMBLY LANGUAGE OPCODES

0. Notations and Format used in this Document

1. AAA - Ascii Adjust for Addition

2. AAD - Ascii Adjust for Division

3. AAM - Ascii Adjust for Multiplication

4. AAS - Ascii Adjust for Subtraction

5. ADC - Add With Carry

6. ADD - Arithmetic Addition

7. AND - Logical And

8. ARPL - Adjusted Requested Privilege Level of Selector

9. BOUND - Array Index Bound Check

10. BSF - Bit Scan Forward

11. BSR - Bit Scan Reverse

12. BSWAP - Byte Swap

13. BT - Bit Test

14. BTC - Bit Test with Compliment

15. BTR - Bit Test with Reset

16. BTS - Bit Test and Set

17. CALL - Procedure Call

18. CBW - Convert Byte to Word

19. CDQ - Convert Double to Quad

20. CLC - Clear Carry

21. CLD - Clear Direction Flag

22. CLI - Clear Interrupt Flag

23. CLTS - Clear Task Switched Flag

24. CMC - Complement Carry Flag

25. CMP - Compare

26. CMPS - Compare String

27. CMPXCHG - Compare and Exchange

28. CWD - Convert Word to Doubleword

29. CWDE - Convert Word to Extended Doubleword

30. DAA - Decimal Adjust for Addition

31. DAS - Decimal Adjust for Subtraction

32. DEC - Decrement

33. DIV - Divide

34. ENTER - Make Stack Frame

35. ESC - Escape

36. Floating point instuctions - no descriptions

37. HLT - Halt CPU

38. IDIV - Signed Integer Division

39. IMUL - Signed Multiply

40. IN - Input Byte or Word From Port

41. INC - Increment

42. INS - Input String from Port

http://www.mathemainzel.info/files/x86asmref.html#abrev
http://www.mathemainzel.info/files/x86asmref.html#aaa
http://www.mathemainzel.info/files/x86asmref.html#aad
http://www.mathemainzel.info/files/x86asmref.html#aam
http://www.mathemainzel.info/files/x86asmref.html#aas
http://www.mathemainzel.info/files/x86asmref.html#adc
http://www.mathemainzel.info/files/x86asmref.html#add
http://www.mathemainzel.info/files/x86asmref.html#and
http://www.mathemainzel.info/files/x86asmref.html#arpl
http://www.mathemainzel.info/files/x86asmref.html#bound
http://www.mathemainzel.info/files/x86asmref.html#bsf
http://www.mathemainzel.info/files/x86asmref.html#bsr
http://www.mathemainzel.info/files/x86asmref.html#bswap
http://www.mathemainzel.info/files/x86asmref.html#bt
http://www.mathemainzel.info/files/x86asmref.html#btc
http://www.mathemainzel.info/files/x86asmref.html#btr
http://www.mathemainzel.info/files/x86asmref.html#bts
http://www.mathemainzel.info/files/x86asmref.html#call
http://www.mathemainzel.info/files/x86asmref.html#cbw
http://www.mathemainzel.info/files/x86asmref.html#cdq
http://www.mathemainzel.info/files/x86asmref.html#clc
http://www.mathemainzel.info/files/x86asmref.html#cld
http://www.mathemainzel.info/files/x86asmref.html#cli
http://www.mathemainzel.info/files/x86asmref.html#clts
http://www.mathemainzel.info/files/x86asmref.html#cmc
http://www.mathemainzel.info/files/x86asmref.html#cmp
http://www.mathemainzel.info/files/x86asmref.html#cmps
http://www.mathemainzel.info/files/x86asmref.html#cmpxchg
http://www.mathemainzel.info/files/x86asmref.html#cwd
http://www.mathemainzel.info/files/x86asmref.html#cwde
http://www.mathemainzel.info/files/x86asmref.html#daa
http://www.mathemainzel.info/files/x86asmref.html#das
http://www.mathemainzel.info/files/x86asmref.html#dec
http://www.mathemainzel.info/files/x86asmref.html#div
http://www.mathemainzel.info/files/x86asmref.html#enter
http://www.mathemainzel.info/files/x86asmref.html#esc
http://www.mathemainzel.info/files/x86asmref.html#float
http://www.mathemainzel.info/files/x86asmref.html#hlt
http://www.mathemainzel.info/files/x86asmref.html#idiv
http://www.mathemainzel.info/files/x86asmref.html#imul
http://www.mathemainzel.info/files/x86asmref.html#in
http://www.mathemainzel.info/files/x86asmref.html#inc
http://www.mathemainzel.info/files/x86asmref.html#ins

43. INT - Interrupt

44. INTO - Interrupt on Overflow

45. INVD - Invalidate Cache

46. INVLPG - Invalidate Translation Look-Aside Buffer Entry

47. IRET/IRETD - Interrupt Return

48. JA/JNBE - Jump Above / Jump Not Below or Equal

49. JAE/JNB - Jump Above or Equal / Jump on Not Below

50. JB/JNAE - Jump Below / Jump Not Above or Equal

51. JBE/JNA - Jump Below or Equal / Jump Not Above

52. JC - Jump on Carry

53. JCXZ/JECXZ - Jump if Register (E)CX is Zero

54. JE/JZ - Jump Equal / Jump Zero

55. JG/JNLE - Jump Greater / Jump Not Less or Equal

56. JGE/JNL - Jump Greater or Equal / Jump Not Less

57. JL/JNGE - Jump Less / Jump Not Greater or Equal

58. JLE/JNG - Jump Less or Equal / Jump Not Greater

59. JMP - Unconditional Jump

60. JNC - Jump Not Carry

61. JNE/JNZ - Jump Not Equal / Jump Not Zero

62. JNO - Jump Not Overflow

63. JNS - Jump Not Signed

64. JNP/JPO - Jump Not Parity / Jump Parity Odd

65. JO - Jump on Overflow

66. JP/JPE - Jump on Parity / Jump on Parity Even

67. JS - Jump Signed

68. LAHF - Load Register AH From Flags

69. LAR - Load Access Rights

70. LDS - Load Pointer Using DS

71. LEA - Load Effective Address

72. LEAVE - Restore Stack for Procedure Exit

73. LES - Load Pointer Using ES

74. LFS - Load Pointer Using FS

75. LGDT - Load Global Descriptor Table

76. LIDT - Load Interrupt Descriptor Table

77. LGS - Load Pointer Using GS

78. LLDT - Load Local Descriptor Table

79. LMSW - Load Machine Status Word

80. LOCK - Lock Bus

81. LODS - Load String

82. LOOP - Decrement CX and Loop if CX Not Zero

83. LOOPE/LOOPZ - Loop While Equal / Loop While Zero

84. LOOPNZ/LOOPNE - Loop While Not Zero / Loop While Not Equal

85. LSL - Load Segment Limit

86. LSS - Load Pointer Using SS

87. LTR - Load Task Register

88. MOV - Move Byte or Word

89. MOVS - Move String

90. MOVSX - Move with Sign Extend

91. MOVZX - Move with Zero Extend

92. MUL - Unsigned Multiply

http://www.mathemainzel.info/files/x86asmref.html#int
http://www.mathemainzel.info/files/x86asmref.html#into
http://www.mathemainzel.info/files/x86asmref.html#invd
http://www.mathemainzel.info/files/x86asmref.html#invlpg
http://www.mathemainzel.info/files/x86asmref.html#iret
http://www.mathemainzel.info/files/x86asmref.html#ja
http://www.mathemainzel.info/files/x86asmref.html#jae
http://www.mathemainzel.info/files/x86asmref.html#jb
http://www.mathemainzel.info/files/x86asmref.html#jbe
http://www.mathemainzel.info/files/x86asmref.html#jc
http://www.mathemainzel.info/files/x86asmref.html#jcxz
http://www.mathemainzel.info/files/x86asmref.html#je
http://www.mathemainzel.info/files/x86asmref.html#jg
http://www.mathemainzel.info/files/x86asmref.html#jge
http://www.mathemainzel.info/files/x86asmref.html#jl
http://www.mathemainzel.info/files/x86asmref.html#jle
http://www.mathemainzel.info/files/x86asmref.html#jmp
http://www.mathemainzel.info/files/x86asmref.html#jnc
http://www.mathemainzel.info/files/x86asmref.html#jne
http://www.mathemainzel.info/files/x86asmref.html#jno
http://www.mathemainzel.info/files/x86asmref.html#jns
http://www.mathemainzel.info/files/x86asmref.html#jnp
http://www.mathemainzel.info/files/x86asmref.html#jo
http://www.mathemainzel.info/files/x86asmref.html#jp
http://www.mathemainzel.info/files/x86asmref.html#js
http://www.mathemainzel.info/files/x86asmref.html#lahf
http://www.mathemainzel.info/files/x86asmref.html#lar
http://www.mathemainzel.info/files/x86asmref.html#lds
http://www.mathemainzel.info/files/x86asmref.html#lea
http://www.mathemainzel.info/files/x86asmref.html#leave
http://www.mathemainzel.info/files/x86asmref.html#les
http://www.mathemainzel.info/files/x86asmref.html#lfs
http://www.mathemainzel.info/files/x86asmref.html#lgdt
http://www.mathemainzel.info/files/x86asmref.html#lidt
http://www.mathemainzel.info/files/x86asmref.html#lgs
http://www.mathemainzel.info/files/x86asmref.html#lldt
http://www.mathemainzel.info/files/x86asmref.html#lmsw
http://www.mathemainzel.info/files/x86asmref.html#lock
http://www.mathemainzel.info/files/x86asmref.html#lods
http://www.mathemainzel.info/files/x86asmref.html#loop
http://www.mathemainzel.info/files/x86asmref.html#loope
http://www.mathemainzel.info/files/x86asmref.html#loopnz
http://www.mathemainzel.info/files/x86asmref.html#lsl
http://www.mathemainzel.info/files/x86asmref.html#lss
http://www.mathemainzel.info/files/x86asmref.html#ltr
http://www.mathemainzel.info/files/x86asmref.html#mov
http://www.mathemainzel.info/files/x86asmref.html#movs
http://www.mathemainzel.info/files/x86asmref.html#movsx
http://www.mathemainzel.info/files/x86asmref.html#movzx
http://www.mathemainzel.info/files/x86asmref.html#mul

93. NEG - Two's Complement Negation

94. NOP - No Operation

95. NOT - One's Compliment Negation

96. OR - Inclusive Logical OR

97. OUT - Output Data to Port

98. OUTS - Output String to Port

99. POP - Pop Word off Stack

100. POPA/POPAD - Pop All Registers onto Stack

101. POPF/POPFD - Pop Flags off Stack

102. PUSH - Push Word onto Stack

103. PUSHA/PUSHAD - Push All Registers onto Stack

104. PUSHF/PUSHFD - Push Flags onto Stack

105. RCL - Rotate Through Carry Left

106. RCR - Rotate Through Carry Right

107. REP - Repeat String Operation

108. REPE/REPZ - Repeat Equal / Repeat Zero

109. REPNE/REPNZ - Repeat Not Equal / Repeat Not Zero

110. RET/RETF - Return From Procedure

111. ROL - Rotate Left

112. ROR - Rotate Right

113. SAHF - Store AH Register into FLAGS

114. SAL/SHL - Shift Arithmetic Left / Shift Logical Left

115. SAR - Shift Arithmetic Right

116. SBB - Subtract with Borrow

117. SCAS - Scan String

118. SETAE/SETNB - Set if Above or Equal / Set if Not Below

119. SETB/SETNAE - Set if Below / Set if Not Above or Equal

120. SETBE/SETNA - Set if Below or Equal / Set if Not Above

121. SETE/SETZ - Set if Equal / Set if Zero

122. SETNE/SETNZ - Set if Not Equal / Set if Not Zero

123. SETL/SETNGE - Set if Less / Set if Not Greater or Equal

124. SETGE/SETNL - Set if Greater or Equal / Set if Not Less

125. SETLE/SETNG - Set if Less or Equal / Set if Not greater or Equal

126. SETG/SETNLE - Set if Greater / Set if Not Less or Equal

127. SETS - Set if Signed

128. SETNS - Set if Not Signed

129. SETC - Set if Carry

130. SETNC - Set if Not Carry

131. SETO - Set if Overflow

132. SETNO - Set if Not Overflow

133. SETP/SETPE - Set if Parity / Set if Parity Even

134. SETNP/SETPO - Set if No Parity / Set if Parity Odd

135. SGDT - Store Global Descriptor Table

136. SIDT - Store Interrupt Descriptor Table

137. SHR - Shift Logical Right

138. SHLD/SHRD - Double Precision Shift

139. SLDT - Store Local Descriptor Table

140. SMSW - Store Machine Status Word

141. STC - Set Carry

142. STD - Set Direction Flag

http://www.mathemainzel.info/files/x86asmref.html#neg
http://www.mathemainzel.info/files/x86asmref.html#nop
http://www.mathemainzel.info/files/x86asmref.html#not
http://www.mathemainzel.info/files/x86asmref.html#or
http://www.mathemainzel.info/files/x86asmref.html#out
http://www.mathemainzel.info/files/x86asmref.html#outs
http://www.mathemainzel.info/files/x86asmref.html#pop
http://www.mathemainzel.info/files/x86asmref.html#popa
http://www.mathemainzel.info/files/x86asmref.html#popf
http://www.mathemainzel.info/files/x86asmref.html#push
http://www.mathemainzel.info/files/x86asmref.html#pusha
http://www.mathemainzel.info/files/x86asmref.html#pushf
http://www.mathemainzel.info/files/x86asmref.html#rcl
http://www.mathemainzel.info/files/x86asmref.html#rcr
http://www.mathemainzel.info/files/x86asmref.html#rep
http://www.mathemainzel.info/files/x86asmref.html#repe
http://www.mathemainzel.info/files/x86asmref.html#repne
http://www.mathemainzel.info/files/x86asmref.html#ret
http://www.mathemainzel.info/files/x86asmref.html#rol
http://www.mathemainzel.info/files/x86asmref.html#ror
http://www.mathemainzel.info/files/x86asmref.html#sahf
http://www.mathemainzel.info/files/x86asmref.html#sal
http://www.mathemainzel.info/files/x86asmref.html#sar
http://www.mathemainzel.info/files/x86asmref.html#sbb
http://www.mathemainzel.info/files/x86asmref.html#scas
http://www.mathemainzel.info/files/x86asmref.html#setae
http://www.mathemainzel.info/files/x86asmref.html#setb
http://www.mathemainzel.info/files/x86asmref.html#setbe
http://www.mathemainzel.info/files/x86asmref.html#sete
http://www.mathemainzel.info/files/x86asmref.html#setne
http://www.mathemainzel.info/files/x86asmref.html#setl
http://www.mathemainzel.info/files/x86asmref.html#setge
http://www.mathemainzel.info/files/x86asmref.html#setle
http://www.mathemainzel.info/files/x86asmref.html#setg
http://www.mathemainzel.info/files/x86asmref.html#sets
http://www.mathemainzel.info/files/x86asmref.html#setns
http://www.mathemainzel.info/files/x86asmref.html#setc
http://www.mathemainzel.info/files/x86asmref.html#setnc
http://www.mathemainzel.info/files/x86asmref.html#seto
http://www.mathemainzel.info/files/x86asmref.html#setno
http://www.mathemainzel.info/files/x86asmref.html#setp
http://www.mathemainzel.info/files/x86asmref.html#setnp
http://www.mathemainzel.info/files/x86asmref.html#sgdt
http://www.mathemainzel.info/files/x86asmref.html#sidt
http://www.mathemainzel.info/files/x86asmref.html#shr
http://www.mathemainzel.info/files/x86asmref.html#shld
http://www.mathemainzel.info/files/x86asmref.html#sldt
http://www.mathemainzel.info/files/x86asmref.html#smsw
http://www.mathemainzel.info/files/x86asmref.html#stc
http://www.mathemainzel.info/files/x86asmref.html#std

143. STI - Set Interrupt Flag

144. STOS - Store String

145. STR - Store Task Register

146. SUB - Subtract

147. TEST - Test For Bit Pattern

148. VERR - Verify Read

149. VERW - Verify Write

150. WAIT/FWAIT - Event Wait

151. WBINVD - Write-Back and Invalidate Cache

152. XCHG - Exchange

153. XLAT/XLATB - Translate

154. XOR - Exclusive OR

BLOCK DIAGRAM OF INTEL 8086

The 8086 CPU is divided into two independent functional units:

1. Bus Interface Unit (BIU)

2. Execution Unit (EU)

 Fig. 1 Block diagram of intel 8086

Features of 8086 Microprocessor:

1. Intel 8086 was launched in 1978.

2. It was the first 16-bit microprocessor.

3. This microprocessor had major improvement over the execution speed of 8085.

http://www.mathemainzel.info/files/x86asmref.html#sti
http://www.mathemainzel.info/files/x86asmref.html#stos
http://www.mathemainzel.info/files/x86asmref.html#str
http://www.mathemainzel.info/files/x86asmref.html#sub
http://www.mathemainzel.info/files/x86asmref.html#test
http://www.mathemainzel.info/files/x86asmref.html#verr
http://www.mathemainzel.info/files/x86asmref.html#verw
http://www.mathemainzel.info/files/x86asmref.html#wait
http://www.mathemainzel.info/files/x86asmref.html#wbinvd
http://www.mathemainzel.info/files/x86asmref.html#xchg
http://www.mathemainzel.info/files/x86asmref.html#xlat
http://www.mathemainzel.info/files/x86asmref.html#xor

4. It is available as 40-pin Dual-Inline-Package (DIP).

5. It is available in three versions:

a. 8086 (5 MHz)

b. 8086-2 (8 MHz)

c. 8086-1 (10 MHz)

 6. It consists of 29,000 transistors.

Bus Interface Unit (BIU)

The function of BIU is to:

 Fetch the instruction or data from memory.

 Write the data to memory.

 Write the data to the port.

 Read data from the port.

Instruction Queue

1. To increase the execution speed, BIU fetches as many as six instruction bytes ahead to

time from memory.

2. All six bytes are then held in first in first out 6 byte register called instruction queue.

3. Then all bytes have to be given to EU one by one.

 4. This pre fetching operation of BIU may be in parallel with execution operation of EU,

which improves the speed execution of the instruction.

Execution Unit (EU)

The functions of execution unit are:

 To tell BIU where to fetch the instructions or data from.

 To decode the instructions.

 To execute the instructions.

The EU contains the control circuitry to perform various internal operations. A decoder in EU

decodes the instruction fetched memory to generate different internal or external control

signals required to perform the operation. EU has 16-bit ALU, which can perform arithmetic

and logical operations on 8-bit as well as 16-bit.

General Purpose Registers of 8086

These registers can be used as 8-bit registers individually or can be used as 16-bit in pair to

have AX, BX, CX, and DX.

1. AX Register: AX register is also known as accumulator register that stores operands for

arithmetic operation like divided, rotate.

2. BX Register: This register is mainly used as a base register. It holds the starting base

location of a memory region within a data segment.

3. CX Register: It is defined as a counter. It is primarily used in loop instruction to store loop

counter.

4. DX Register: DX register is used to contain I/O port address for I/O instruction.

Segment Registers

Additional registers called segment registers generate memory address when combined with

other in the microprocessor. In 8086 microprocessor memory is divided into 4 segments as

follow:

 Fig.2 Memory segments of 8086

1. Code Segment (CS): The CS register is used for addressing a memory location in the

Code Segment of the memory, where the executable program is stored.

2. Data Segment (DS): The DS contains most data used by program. Data are accessed in the

Data Segment by an offset address or the content of other register that holds the offset

address.

3. Stack Segment (SS): SS defined the area of memory used for the stack.

4. Extra Segment (ES): ES is additional data segment that is used by some of the string to

hold the destination data.

Flag Registers of 8086

Flag register in EU is of 16-bit and is shown in fig. 3:

 Fig.3 Flag register of 8086

Flags Register determines the current state of the processor. They are modified automatically

by CPU after mathematical operations, this allows to determine the type of the result, and to

determine conditions to transfer control to other parts of the program. 8086 has 9 flags and

they are divided into two categories:

 1. Conditional Flags

 2. Control Flags

 Conditional Flags

Conditional flags represent result of last arithmetic or logical instruction executed.

Conditional flags are as follows:

 Carry Flag (CF): This flag indicates an overflow condition for unsigned integer arithmetic.

It is also used in multiple-precision arithmetic.

 Auxiliary Flag (AF): If an operation performed in ALU generates a carry/barrow from

lower nibble (i.e. D0 – D3) to upper nibble (i.e. D4 – D7), the AF flag is set i.e. carry given

by D3 bit to D4 is AF flag. This is not a general-purpose flag, it is used internally by the

processor to perform Binary to BCD conversion.

 Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of

the result contains even number of 1’s, the Parity Flag is set and for odd number of 1’s, the

Parity Flag is reset.

 Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is

reset.

 Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If

the result of operation is negative, sign flag is set.

 Overflow Flag (OF): It occurs when signed numbers are added or subtracted. An OF

indicates that the result has exceeded the capacity of machine.

 Control Flags

Control flags are set or reset deliberately to control the operations of the execution unit.

Control flags are as follows:

1. Trap Flag (TP):

a. It is used for single step control.

b. It allows user to execute one instruction of a program at a time for debugging.

c. When trap flag is set, program can be run in single step mode.

2. Interrupt Flag (IF):

a. It is an interrupt enable/disable flag.

b. If it is set, the maskable interrupt of 8086 is enabled and if it is reset, the interrupt is

disabled.

 c. It can be set by executing instruction sit and can be cleared by executing CLI instruction.

3. Direction Flag (DF):

a. It is used in string operation.

b. If it is set, string bytes are accessed from higher memory address to lower memory address.

c. When it is reset, the string bytes are accessed from lower memory address to higher

memory address.

Microprocessor - 8086 Pin Configuration

8086 was the first 16-bit microprocessor available in 40-pin DIP (Dual Inline Package) chip.

Let us now discuss in detail the pin configuration of a 8086 Microprocessor.

8086 Pin Diagram

Here is the pin diagram of 8086 microprocessor –

Let us now discuss the signals in detail −

Power supply and frequency signals

It uses 5V DC supply at VCC pin 40, and uses ground at VSS pin 1 and 20 for its operation.

Clock signal

Clock signal is provided through Pin-19. It provides timing to the processor for operations. Its

frequency is different for different versions, i.e. 5MHz, 8MHz and 10MHz.

Address/data bus

AD0-AD15. These are 16 address/data bus. AD0-AD7 carries low order byte data and

AD8AD15 carries higher order byte data. During the first clock cycle, it carries 16-bit

address and after that it carries 16-bit data.

Address/status bus

A16-A19/S3-S6. These are the 4 address/status buses. During the first clock cycle, it carries

4-bit address and later it carries status signals.

S7/BHE

BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer of

data using data bus D8-D15. This signal is low during the first clock cycle, thereafter it is

active.

Read(\overline{RD})

It is available at pin 32 and is used to read signal for Read operation.

Ready

It is available at pin 22. It is an acknowledgement signal from I/O devices that data is

transferred. It is an active high signal. When it is high, it indicates that the device is ready to

transfer data. When it is low, it indicates wait state.

RESET

It is available at pin 21 and is used to restart the execution. It causes the processor to

immediately terminate its present activity. This signal is active high for the first 4 clock

cycles to RESET the microprocessor.

INTR

It is available at pin 18. It is an interrupt request signal, which is sampled during the last

clock cycle of each instruction to determine if the processor considered this as an interrupt or

not.

NMI

It stands for non-maskable interrupt and is available at pin 17. It is an edge triggered input,

which causes an interrupt request to the microprocessor.

\overline{TEST}

This signal is like wait state and is available at pin 23. When this signal is high, then the

processor has to wait for IDLE state, else the execution continues.

MN/\overline{MX}

It stands for Minimum/Maximum and is available at pin 33. It indicates what mode the

processor is to operate in; when it is high, it works in the minimum mode and vice-aversa.

INTA

It is an interrupt acknowledgement signal and id available at pin 24. When the

microprocessor receives this signal, it acknowledges the interrupt.

ALE

It stands for address enable latch and is available at pin 25. A positive pulse is generated each

time the processor begins any operation. This signal indicates the availability of a valid

address on the address/data lines.

DEN

It stands for Data Enable and is available at pin 26. It is used to enable Transreceiver 8286.

The transreceiver is a device used to separate data from the address/data bus.

DT/R

It stands for Data Transmit/Receive signal and is available at pin 27. It decides the direction

of data flow through the transreceiver. When it is high, data is transmitted out and vice-a-

versa.

M/IO

This signal is used to distinguish between memory and I/O operations. When it is high, it

indicates I/O operation and when it is low indicates the memory operation. It is available at

pin 28.

WR

It stands for write signal and is available at pin 29. It is used to write the data into the

memory or the output device depending on the status of M/IO signal.

HLDA

It stands for Hold Acknowledgement signal and is available at pin 30. This signal

acknowledges the HOLD signal.

HOLD

This signal indicates to the processor that external devices are requesting to access the

address/data buses. It is available at pin 31.

Assembly Language Program Process

1. Kit on.

2. Press reset button.

3. Press enter key.

4. Press A for selection of Addressing mode and type starting location.

5. Type instruction like MOV SI 0500

6. Next line of program [memory location 0400 to 0413 I (INT 03)].

7. Press F7.

8. Press D for entering input data.

9. Press 0500 this is starting location of input data.

10. Continue give input up to 050F address.

11. Press F7 for main menu.

12. Press G for execution.

13. Press enter key.

14. Press f7 for saving result.

15. Press D.

16. Press 0510. This is out stored memory location.

17. We get result 0510 memory location is 15.

15 is the largest number in storing.

 SAMPLE PROGRAM

The monitor software of M86-02 resides in 16K Byte of EPROM. The sys- tem

software has certain useful routines, which can be utilised by the user for developing

his programs. The address of these routines are given in the Subroutine chapter.

EXAMPLE

The following sample programs are given here to make the user familiarise with the

operation of M86-02.

1) Addition of two binary number of 8 byte length.

2) Find the largest number in a given string.

3) Sort a string of bytes in descending order.

4) ASCII multiplication.

5) Divide a string of unpacked ASCII digits.

6) Calculate the no. of bytes in a string of data,

7) Convert the string of data to its compliment form.

PROGRAM-1: To ADD two Binary numbers each 8 Bytes long:

ADDRESS OP CODE MNEMONIC COMMENTS

0400 F8 CLC Clear Carry Flag.

 0401 B9 04 00 MOV CX,0004 Load Counter register with no.

of times addition to be per-

formed (i.e. Initialize the counter

register).

 0404 BE 00 05 MOV SI,0500 Load source Index Reg. with

starting address of Ist Binary no.

(LSBs array)

0407 BF 08 05 MOV DI, 0508 Load Destination Index Reg with

Dest. Address (where the result of

add. is to be started storing). Also

it's the starting address of MSBs

of array.

 040A 8B 04 MOV AX, [SI]> Load Data bytes (which are in

location 0500 and 0501 in 16 Bit

ACC.

 i.e. (0500) – AH

 (0501)- AL

040C 11 05 ADC [DI],AX Add the contents (MS Bytes) of

0508, 0509 with the con- tents

(LS Bytes) of 0500 + 0501 and

store the result in location 0508

onwards.

040E 46 INC SI Point at 0502 LOCN (Next rele-

040F 46 INC SI vant source LOCN).

0410 47 INC DI Point at next relevant LOCN. i.e.

0411 47 INC DI 0504

0412 49 DEC CX Decrement the counter.

0413 75 F5 JNE 040A If not zero (i.e. CX = 0000)

then continue addition.

0415 F4/CC HLT/INT 03 Else, Halt.

For example

 After Execution

 0500 : 01 0508 : 0A 0508 : 0B

0501 : 02 0509 : 0B 0509 : 0D

0502 : 03 050A : 0C 050A : 0F

0503 : 04 050B : 0E 050B : 12

0504 : 05 050C : 0F 050C : 14

0505 : 06 050D : 10 050D : 16

0506 : 07 050E : 11 050E : 18

0507 : 08 050F : 12 050F : 1A

 PROGRAM-2: To find the maximum no. in a given string (16 bytes long) and store it in

location 0510.

ADDRESS OP CODE MNEMONIC COMMENTS

0400 BE 00 05 MOV SI, 0500 Lond SI reg. with starting

address of string.

0403 B9 10 00 MOV CX,0010 Initialize Counter register (with

the length of string i.e. no. of

bytes).

0406 B4 00 MOV AH,00 Initialize the 8 bit ACC.

0408 3A 24 CMP AH, [SI] The first data byte of the string

with ‘00’.

040A 73 02 JNB 040E If both bytes match (above is

equal) then branch to (I).

040C BA 24 MOV AH, [SI] Else, move the contents of

(0500) into 8 bit ACC, i.e. a

real no. in AH.

040E 46 INC SI Point at the address of string.

040F E0 F7 LOOPNE 0408 Decrement the counter value, if

not zero, continue processing

(searching to the Max. No.

continued)

0411 98 24 MOV [SI], AH Max. no. in 0510 address.

0413 F4/CC HLT/INT 03 Halt.

For example

 After Execution

 0500 : 01 0508 : 12 0510 : 15

0501 : 02 0509 : 08

0502 : 03 050A : 09

0503 : 04 050B : 0A

0504 : 05 050C : 0B

0505 : 06 050D : 0E

0506 : 15 050E : 0C

0507 : 07 050F : 0D

PROGRAM-3: To sort a string of a no. of bytes in descending order:

ADDRESS OP CODE MNEMONIC COMMENTS

0400 BE 00 05 MOV SI,0500 Initialize SI reg. with Mem

LOCN0500

0403 8B 1C MOV BX, SI BX has the no. of bytes (to be

used for sorting) LOCNS 0500

& 0501.

0405 4B DEC BX Decrement the no. of bytes by

one.

0406 8B 0C (3) MOV CX, [SI] Also CX has the no. of bytes

in LOCNS 0500 and 0501.

0408 49 DEC CX Decrement the no. of bytes by

one

0409 BE 02 05 MOV SI,0502 Initialize SI reg. with the

starting address of string

(having data bytes).

040C 8A 04 (2) MOV AL, [SI] Move the first data byte of

string into AL.

040E 46 INC SI Point at the next bytes of the

string.

040F 3A 04 CMP AL, [SI] Compare the two bytes of

string.

0411 73 06 JNB 0419 If two bytes are equal or 1st

byte is above that the second

byte branch to (1).

0413 86 04 XCHG [SI],AL Else.

0415 4E DEC SI Second byte is less than first

byte and swap the two bytes..

0416 88 04 MOV [S;],AL

0418 46 INC SI Point at the next LOCN of the

string.

0419 E2 F1 (1) LOOP 040O Loop of CX is not zero (i.e.

continue processing till z=0.

041B 4B DEC BX At this juncture, first sorting

will be over i.e. first no. is

logically

041C BE 00 05 MOV SI, 0500 compared with the rest of the

nos. For the correct sorting, all

the nos. must be compared with

each other logically, i.e. above

processing should be carried

out no. of bytes times.

041F 75 E5 JNE 0406

 0421 F4 INT 03 Halt.

For example

 After Execution

0500 : 05 0502 : 28

0501 : 00 0503 : 25

0502 : 20 0504 : 20

0503 : 25 0505 : 15

0504 : 28 0506 : 07

0505 : 15

0506 : 07

PROGRAM-4: ASCII MULTIPLICATION

To multiply an ASCII string of eight numbers by a single ASCII digit. The result is a string

of unpacked BCD digits.

ADDRESS OP CODE MNEMONIC COMMENTS

 0400 BE 00 05 MOV SI,0500 Lond SI reg. with starting

address of string.

 0403 BF 08 05 MOV DI,0508 Lond DI reg. with starting

address of result LOCNS.

 0406 B2 34 MOV DL,34 Load DL with the multiplier

ASCII digit.

0408 B9 08 00 MOV CX, 0008 Load counter reg. with the no.

of bytes in the string.

040B C6 05 00 MOV DI, 0050

040E 80 E0 0F AND DL,0F MS nibble of multiplier is

zeroed.

 0411 8A 04 (a) MOV AL, [SI] First ASCII no. of string in

AL.

0413 46 INC SI Point at the next LOCN in

string (of ASCII Nos.)

0414 80 E0 0F AND AL,0F MS nibble at multiplier no gap

and is also zeroed.

0417 F6 E2 MUL DL Perform the fn. AX = AL*DL.

0419 D4 0A AAM Perform the fn. AH = AL/DA.

 AL = remainder

041B 02 05 ADD AL,[DI] The contents of AL

(remainder obtained by

performing the above

operation.)

041D 37 AAA Added with 00 which are in 1st

Dest. LOCN. The contents of

AL are unpacked Decimal no.

and are stored in 1st Dest.

LOCN(=0508).

041E 88 05 MOV [DI],AL

0420 47 INC DI Point at the next Dest. LOCN.

0421 88 25 MOV [DI], AH Contents of AH (quotient got in

AAM operation) are moved in

next best LOCN (0509)

0423 49 DEC CX Decrement the counter reg.

0424 75 EB JNE 0411 If not zero continue multiply

and storing unpacked BCD

digits, ELSE.

0426 F4 HLT HALT.

For example

 After Execution

 (Unpacked BCD digits)

 0500 : 31 0508 : 04 80

0501 : 32 0509 : 08 03

0502 : 33 050A : 02 A6

0503 : 34 050B : 07 00

0504 : 35 050C : 01 06

0505 : 36 050D : 06 10

0506 : 31 050E : 06 10

0507 : 32 050F : 08 00

 PROGRAM-5: To Divide a string of unpacked ASCII digits:

 ADDRESS OP CODE MNEMONIC COMMENTS

 0400 B2 36 MOV DL,36 DL having the divisor, a

single 8 bit ASCII digit.

 0402 BE 00 05 MOV SL,0500 Lond SI reg. with starting

address of ASCII string.

 0405 BF 08 05 MOV DI,0508 Load DI with the starting

address of the result LOCNS.

0408 B9 08 00 MOV CX, 0008 Initialize the counter Reg. with

the no. of bytes in the string.

 040B 80 E2 0F AND DL,0F MS nibble of DL contents is

zeroed.

 040E 32 E4 XOR AH,AH Initialize the 8 bit ACC (=00).

 0410 AC (1) LODSB Load AL with the contents of

address accessed by SI reg. and

increment SI reg. i.e. point at the

next address LOCN.

 0411 80 E0 0F AND AL,0F MS nibble of AL contents is also

zeroed.

 0414 D5 0A AAD Perform the fn. AL=(AH*OA +

AL), AH = 00.

0416 F6 F2 DIV DL Perform the fn. AD/DL AL =

Quotient and AH = remainder.

 0418 AA STOSB The contents of AL are stored in

the address pointed to by the DI

reg. and next address LOCN in DI

reg. is pointed (i.e. current address

LOCN of DI reg. is incremented

by one).

 0419 E0 F5 LOOPNE 0410 Continue dividing the unpacked

ASCII digits if the contents of C

are not zeroed; else.

 041B F4 INT 03 Halt.

For example

 After Execution

 0500 : 31 0508 : 00

0501 : 32 0509 : 02

0502 : 33 050A : 00

0503 : 34 050B : 05

0504 : 35 050C : 07

0505 : 36 050D : 06

0506 : 31 050E : 00

0507 : 32 050F : 02

PROGRAM-6:

A data string of no. of bytes (to be specified in CX reg.) is located from the starting address

0500. This data string is to be converted to its equivalent 2’S complement form and the result

is to be stored from 0600 onwards.

ADDRESS OP CODE MNEMONIC COMMENTS

 0400 BE 00 05 MOV SI,0500 Lond SI reg. with starting

address of data string.

0403 BF 00 06 MOV DI,0600 Lond DI reg. with starting

address of result LOCNS.

0406 B9 10 00 MOV CX,0010 Load CX with the no. of bytes

in the string.

0409 AC (1) LODSB Load AL with data byte

accessed by SI reg. and

increment the address LOCN in

SI reg.

 040A F6 D8 NEG AL The contents of AL are 2’S

complemented.

040C AA STOSB Store AL contents in LOCN

pointed to by DI ref. &

increment in the current

location in DI reg.

040D E0 FA LOOPNE 0409 If CX = 0000,continue 2’S

complementing the data in

string else;

040F F4 INT 03 Halt.

For example

 After Execution

0500 : 01 0600 : FF

0501 : 02 0601 : FE

0502 : 03 0602 : FD

0503 : 04 0603 : FC

0404 : 05 0604 : FB

0405 : 06 0605 : FA

0406 : 07 0606 : F9

0407 : 08 0607 : F8

0408 : 09 0608 : F7

0409 : 0A 0609 : F6

040A : 0B 060A : F5

040B : 0C 060B : F4

 040C : 0D 060C : F3

040D : 0E 060D : F2

 040E : 0F 060E : F1

040F : 10 060F : F0

Table of Contents

System Introduction

GENERAL DESCRIPTION……………………………………………………………..1

SYSTEM SPECIFICATION………………………………………………………………2

SYSTEM CAPABILITIESL………………………………………………………………..3

HARDWARE DESCRIPTION

SYSTEM INTRODUCTION

GENERAL DESCRIPTION

VMC-8031/8051/89C51 is a single board MICROCONTROLLER TRAINING/DE-

VELOPMENT KIT configured around the most popular Intel's 8051/8051, 8 bil singlo chip

micro controller. VMC-8031/8051/19651 can be used to train Engineer's about the

architecture, instruction set and capabilities of the 8031 chip and also for actually controlling

any industrial process etc.

The kit communicates with the outside world through a key board having 28 hex keys and

seven segment hexadecimal display. The kit has the capability of interacting with an IBM PC

compatible PCXT/AT system

VMC-8031/8051/89C51 provides 32K bytes of RAM and 32K bytes of EPROM. The total on

board program & data memory can be very easily expanded to 128K bytes in an appropriate

combination of RAM and RIOM. The monitor is incorporated from 0000-1FFF and the

necessary 32K bytes of RAM has an address of 2000-3FFF.

The Input/Output structure of VMC-8031/8051/89C51 provides 48 programmable I/ O lines.

It has got 16 bit programmable Timer/Counter for generating any type of counting etc.

The on board resident’s system monitor software is very powerful and provides various

software utilities. The kit provides various powerful software commands like INSERT,

DELETE, BLOCK MOVE, RELOCATE, STRING, FILL & MEMORY COMPARE etc,

which are very helpful in debugging/developing the software.

The system also provides a serial monitor covering most of the command avail- able in

keyboard mode. A help menu makes the monitor more users friendly.

VMC-8031/8051/89C51 is configured around the internationally adopted Bus, which is the

most popular bus for process control and real time applications. All the address, data and

control lines are available at the FRC connector. The Kit is fully expandable for any kind of

application.

The kit has onboard battery backup to store the program incase of power failure.

SYSTEM SPECIFICATION

CPU……………………………………………………………… 8031/8051/89C51

MEMORY………………………………………………………Total on board capacity of

128K bytes

RAM……………………………………………………..……..32K bytes and space for

further expan- sion

ROM…………………………………………………………….32K bytes of EPROM-leaded

with powerful program.

TIMER…………………………………………….16 bit programmable timer/counter using

8253

V.O………………………………………………….48 vO lines using 8255 PPI

KEYBOARD……………………………………....10 keys for command,

 16 keys for hexadecimal data entry

 1 key for vector interrupt &

 1 key for reset

LED DISPLAY……………………………… ……6 seven segment display (4 for address

field & 2 for data field)

BUS ……………………………… ……………..All data, address and controlsignals (TTL

compatible available

at FRC connector)

INTERFACE……………………… ……………RS-232-C through 8251.

POWER SUPPLY REQUIREMENT …………. +5V, 1.5Amp for the kit

OPERATING TEMPERATURE. ……………….0 to 50°C

REAL TIME CLOCK………………………… (OPTIONAL)

BATTERY BACKUP………………………… For RAM

SYSTEM CAPABILITIES

1. Examine the contents of any memory location.

2. Examine/Modify the contents of register.

3. Modify the contents of any of the RAM location

4. Move a block of data memory to another data memory.

5. Move a block of data memory to program memory.

6. Move a block of program memory to program memory.

7. Insert one or more instructions in the user program.

8. Delete one or more instructions from the user program.

9. Fill a particular memory area with a constant.

10. Execute a program at full clock speed.

11. Execute a program in single step i.e. instruction by instruction.

12. Communicate with PC through RS232C port.

13. Upload/Download program to/fro PC.

14. Store the program incase of power failure during operation.

15. Interfacing of I/O lines through 8255.

16. Real Time Clock (Optional)

17. Set/Clear Break Point.

18. Enable/Disable Break Point.

19. Display Break Point

HARDWARE DESCRIPTION

GENERAL

The system has got 8031/8051/89C51 as the Central Processing Unit. The clock frequency

for the system is 10 MHz and is generated from a crystal of 10 MH

MEMORY

VMC-8031/8051/89C51 provides 32K bytes of RAM using 62256 chip and 32K bytes of

EPROM for monitor. The various chips which can be used are 2732, 2764, 27128, 27256,

6116 and 6264. There is one memory space provided on VMC-8031/8051/89C51. This one

space can be defined any address slots from 3000FFFF depending upon the size of the

memory chip to be used.

I/O DEVICES

The various I/O chips used in VMC-8031/8051/89C51 are 8279, 8255, 8251 & 8253. The

functional role of all these chips is given below:

8279 (Keyboard & Display Controller)

6279 is a general purpose progra…

ports are given in Chapter-5, VMC-8031/8051/89C51 provides 48 Input/Output ports using

8255 chips.

8251 (USART)

This chip is a programmable communication interface and is used as a peripheral device. This

device accepts data characters from the CPU, in parallel format ang then converts them into

serial data characters for the CPU. This chip will signal the CPU whenever it can accept a

new character for the CPU. The CPU cor the complete status of it at any time. 8251 has been

utilized in VMC-8031/805

89C51 for RS-232C interface.

8253 (Programmable Internal Timer)

This chip is a programmable interval Timer/Counter and can be used for the generation of

accurate time delays under software control. Various other functions that can be implemented

with this chip are programmable rate generator Even Counter, Binary rate Multiplier, Real

Time Clock etc. This chip has got three in dependent 16 bit counters each having a count rate

of up to 2KHz. The first Timer/Counter (l.e. Counter 0) is being used for Single Step

operation. However, its connection is also brought at connector space CN4. For single step

operation CLKO signal of Counter 0 is getting a clock frequency of 1.575 MHz. The counter

1 is used to generate clock for 8251. The clock 1 is also feed with 1.535 Mhz.

DISPLAY

VMC-8031/8051/89C51 provides six digits of seven segment display. Four digits are for

displaying the address of any location or name of any register, whereas the rest of the two

digits are meant for displaying the contents of a memory location or of a register. All the six

digits of the display are in hexadecimal notation.

BATTERY BACK-UP

The VMC-6031/8051/89C51 provides a battery back-up for the RAM area. A rechargeable

cell is provided onboard for the storing of program in this RAM.

COMMAND DESCRIPTION

KEYBOARD DESCRIPTION

VMC-8031/8051/89C51 has 28 keys and six-seven segment display to communicate with the

outside world. As VMC-8031/8051/89C51 is switches on, a message -UP 51' is displayed on

the display after pressing Reset The key board is as shown below

RESET…………………………………… Reset the system

SHIFT …………………………………….Provides a second level command to some keys.

GO…………………………………………To execute the program.

S.I.……………………………..………..To execute the program in single step mode.

EXREG………………………………….Examine Register; allows user to examine and

modify the contents of different registers.

EXMEM……………………………….Examine Program Memory; allows user to

examine/modify any data memory location.

PRE………………………………………Previous is used as an intermediate terminator in

case of Examine Memory. It decrements the PC contents and

writes the contents of data field to the address displayed in the

address location

NEXT……………………………………Increment is used as a intermediate terminator in

Increment is used Examine Register etc. It increments the

Examine Memand writes the data tying in data field at the location

displayed at address field.

“-“…………………………………………Terminator is used to terminate the command and

write the data in data field at the location displayed in address

field.

BM.DD……………………………….Allows user to move a block of data memory to

another data memory.

BM.PP…………………………………Allows user to Move a block of Program memory to

another program memory.

BM.DP………………………………….Allows user to Move a block of Data memory to

program memory.

FILL……………………………………….Allows user to fill RAM area with a constant.

INS………………………………………Inserts one or more data bytes in the user's

program/data area.

DELD…………………………………..Deletes one or more data bytes from the user's

program/data area.

SETBR…………………………………Set Break point allows user to set a break point

anywhere in the user program.

CLRBR…………………………………Clear Break point allows user to clear a break point

any- where in the user program.

ENBR…………………………………..Enable Break point allows user to enable a break

point any- where in the user program.

DPBR…………………………………..Display Break point allows user to see the address

where the break point was set.

P.PRG…………………………………This key is for further expansion

SERIAL………………………………..This key is used for Serial Communication with PC.

All commands are followed by a set of numeric parameters separated by PREV. NEXT &''

(Execute) to work as delimiters

A on the MSD of address display indicates that system is waiting for a command. If, instead

of a valid command, the user gives a data, the system will display ‘-Err'. A dot on the LSD of

address field indicates that the system expects an address. Whenever the data of any memory

location is changed, a dot is displayed on the LSD of Data Field.

The VMC-8031/8051/89C51 accepts all data and address in hexadecimal form as given in the

table – 1

LIST O F COMMANDS

1. RESET

2. EXAMINE MODIFY REGISTER

3. EXAMINE MODIFY DATA MEMORY

4. EXAMINE MODIFY PROGRAM MEMORY

5. GO

6. SET BREAKPOINT

7. ENABLE BREAKPOINT

8. DISABLE BREAKPOINT

9. DISPLAY BREAKPOINT

10. CLEAR BREAKPOINT

11. SINGLE INSTRUCTION

12. BLOCK MOVE FROM PROGRAM MEMORY TO PROGRAM MEMORY

13. BLOCK MOVE FROM DATA MEMORY TO PROGRAM MEMORY

14. BLOCK MOVE FROM DATA MEMORY TO DATA MEMORY

15. DELETE DATA

16. INSERT DATA

17. FILL

COMMAND DESCRIPTION

RESET

This key initializes the VMC-8031/8051/89C51 Kit and displays '- UP51' on the display. A “–

“ on the left most end of display indicates that the system is expect- ing a valid command.

EXAMINE/MODIFeY REGISTER (EXREG)

This command is used to examine/modify any internal register of the CPU. If one wants to

examine the contents of all the registers, one can start from A' ' Reg. and examine all the

registers by pressing next key. and be entered registers is of be examined, then the key for

that register c specific directly. The contents of any register can be changed.

On pressing SHIFT then EXREG key, the contents of Areg. are displayed in the data field.

One can modify the contents by entering the data and pressing NEXT or else just press

NEXT to see the contents of next registers. On pressing NEXT every time, the system wil

display the contents of al the registers. The registers are displayed ni the sequence of A, B,

PCH, PCL, DPH, DPL, SP, PS, TLO, THO, TL1, TH1, TOD, SCO, IE, RO ot R7. fI at any

stage one wants to terminate the command, just press"." key, the system wil display "-“.

EXAMINE/MODIFY DATA MEMORY(EXMEM)

This command is used to examine the contents of any of the data memory location and

modity the contents of the RAM area.

On pressing this key, a dot is displayed in the address field. One can now enter the address of

any location which have to examine, and press NEXT. The con- tents of this location is

displayed in the data field. If one wants to examine the contents of next location, just press

NEXT and the address in the address field will be incremented by one and its contents will be

displayed in the data field. Same way if one wants to examine the content of previous

location just press PRE key and the address in the address field will be decremented by one

and its contents wil be displayed in the data field.

IF one wants to modify the contents of any RAM location, then enter the data and press

NEXT. The data field will be written in the address displayed in the address field and

simultaneously the contents of next location will be displayed. If at any stage one ants to

terminate the command, just press".* key, the system will display"-".

EXAMINE/MODIFYPROGRAM MEMORY(EPMEM)

This command is used to examine the contents of any of the program memory location.

The rest of the operation is same as explained in EXMEM command.

GO

This command is used to execute the program in full clock speed. On pressing this key, the

program counter contents are displayed in the address field with the data ni the data field.

Enter the starting address of the program, from where the program is to be execute. Press

Terminate (-) key. The CPU wil start executing the program and E wil be displayed ni the

address field.

SINGLE INSTRUCTIONS

This command is used to execute the program instruction by instruction. On pressing SI, the

program counter content is displayed on the address field and its data in the data field. If one

wants to modify the address, one can do that. After entering the address, press NEXT, the

contents of the entered address is dis- played. On pressing NEXT, one instruction wil be

executed and the address of the next instruction will be displayed with its data in the data

field. Each time NEXT is pressed, one instruction is executed. If one wants to terminate and

command at any stage, one can do that using (.) key. On pressing (.) key, a - is displayed in

the address field. One can now examine any internal register of CPU or any memory location

without pressing Reset.

BLOCK MOVE PROGRAM MEMORY TO PROGRAM MEMORY (BM.PP)

This command allows the user to move the block of program from the program memory

location to another program memory location. On pressing SHIFT and BM.PP key a dot is

displayed in the address field. Enter the starting address of the block to be moved and press

NEXT. Again a dot is displayed. Now enter the end address of the block and press NEXT.

Again a dot is displayed. Now enter the destination address and press Terminate (.) key. A - is

displayed in the display

BLOCK MOVE DATA MEMORY TO PROGRAM MEMORY (BM.DP)

Its works the same way as explained above except that the movement of information is from

data to program area.

BLOCK MOVE DATA MEMORY TO DATA MEMORY (BM.DD)

DELETE (DELD)

This command allows the user to delete one or more instructions from the user's program. In

this command all the memory referenced instructions also get modi- fied accordingly ot keep

the logic of the program same. The following information is to be entered:

1) Starting address of the user program.

2)End address of the user program.

3)Address of the location from where onwards the bytes are to be deleted.

4)Address of the location til where the bytes are to be deleted.

It the delete iperation is performed ni a program, the jump & call address of memory

referenced instructions need ta be modified.

On pressing SHIFT and DELete Key, some address is displayed. Enter the starting address of

the program and press NEXT. Now enter the end address and press NEXT A dot si displayed

at the end of the Address field. Now enter the starting address from where the bytes are ot be

deleted and press NEXT. Again a dot si displayed at the end of address field. Enter the end

address till where the bytes are to be deleted and press Terminator () key. A ' will be displayed

in the address field indicating that the system is ready to accept the new command.

INSERT (INSD)

This command allows the user to insert one or more instructions in the user’s program. This

following information is required to be entered.

1) starting address of the program.

2) End address of the program.

3) Address from where the bytes are to be entered.

4) No. of bytes to be entered.

5) Data.

On pressing SHIFT and INSD, a ' ' is displayed in the address field. Enter the starting address

of the program from where you want to insert and press next. again a i s displayed. Now enter

the end address of the program and press NEXT.

Now enter the address of the program where the yes are to be inserted and press NEXT. The

system wil display t h e ' ' again. Now enter the no. of bytes to be inserted and press NEXT.

The system wil display the address where you wish to enter the bytes. With its current data in

the data field. Enter the bytes you want to insert using NEXT key. When all the bytes are

entered, a ?wil be displayed indicating that the Insert is completed.

Syntax

‹starting address of program from where to start the deletion> NEXT ‹no. of bytes to be

deleted>

FILL

This command allows the user to fill a memory area (RAM) with a constant. The following

information is required to be entered.

1) Starting address of the memory area from where the data should be stored.

2) End address of the memory area till were the data should be stored.

3) The constant with which the data should be done i.e. 22

Press SHIFT and FILL. A ',’ wil be displayed ni the address field. Enter starting address and

press NEXT. Again a',’ will be displayed. Now enter the end address till where the filing to be

done and press NEXT.

Again a ‘,’ will be displayed. Now enter byte to be filled and press ‘,’ key. The system will

display ‘,’.

ONBOARD INTERFACES

GENERAL DETAILS OF INTERFACES

VMC-8031/8051/89C51 provides the following on-board interfaces as mentioned earlier.

)1 RS-232C interface through 8251 USART chip. 2) Serial Mode Interface.

RS-232C INTERFACE

The RS-232C interface is provided on VMC-8031/8051/89C51 through Intel's USART chip

8251 (Universal Synchronous Asynchronous Receiver Transmitter). It is a seven line

interface with all seven signal lines being brought out at connector space CN7, which is a 9

pin D type Male Connector. The pin detail for this interface is as follows:

The 8251 uses Timer 0 of 8253 for baud rate generation.

The VMC-8031/8051/89C51 monitor contain a software for connecting VMC-8031/

8051/89C51 through this interface to the serial port of IBM-PC compatible computer. The

commands are provided for stering the contents of system memory to the floppy drive in

Intel's HEX format and same way the Intel HEX files can be loaded into the system memory.

The interface to the serial port of the IBM-PC Compatible Computer can be achieved at any

of the baud rate viz. 19200, 9600, 4800, 2400 & 1200 which can be selected as explained ni

the chapter -ni Serial Monitor commands. However for operating at 19200 baud, only PC/AT

should be used.

BAUD RATE SELECTION

The user can set the VMC-8031/8051/89C51 kit at the desired baud rate by following the

procedure given below:

1) Press serial key on kit keyboard.

2) Press the required key from the table given below:

Press FIL key. Amessage SEr wil be displayed on the Seven Segment display of kit and fi the

computer/terminal si also set at the same baud rate, a message:

VMC-51> SERIAL COMM. COMMAND>

appears on the computer screen.

SERIAL MODE INTERFACE

Utility of this kit is that it can be interfaced with PC through serial port for operations with

the help of PC Keyboard.

1) Connect the kit to the Serial port of PC with the help of cable of be connected at CN6.

2) Switch ON the kít &PC.

3) Run the HYPER TERMINAL and set the COM port &Baud rate.

4) Press RESET, SERIAL and the desired numeric keyof the kit and FILL.

5) The Display on monitor wil be as follows.

VMC-51 SER COMM. COMMAND>

SERIAL COMMANDS

VMC-8031/8051/89C51 has a Serial Interface which allow the user to execute most of the

key board commands through the ASCIl Keyboard. VMC-8031/8051/ 89C51 has a serial

interface through USART 8251. The system can be interface with the serial port of a IBM-

PC/XT/AT compatible Computer. Program having capture facility.

The following commands are available through Serial Mode. Use only CAPITAL letters for

executing the commands.

DUMP DATA MEMORY (DD)

This command dumps the data memory between and including two specified address

separated by a space.

Syntax

DD «starting address> <end address> ‹CR>

The starting address should not be higher than the end address.

ENTER DATA MEMORY (ED)

This command is used for entering data bytes in to data memory area.

Syntax

ED «starting address> ‹CR>

On pressing ‹CR> the PC content is incremented and on pressing ‹Sapce bar> the PC content

is decremented which enables the user to examine/modify the data of the location shown. For

coming out of this command press Esc.

FILL MEMORY (FL)

This command is used to fill a memory area with a constant.

Syntax

FL «starting address> «end address> ‹byte to be filled> ‹CR>

SINGLE INSTRUCTION (SI)

This command is used for running a program ni single instruction mode i.e. instruction by

instruction.

Syntax

SI<starting address> ‹CR›

After the execution of an instruction, the contents of all the registers are dis- played and

system waits for a Carriage Return to be pressed for the execution of the next instruction. For

coming out of this command press Esc key.

EXECUTION IN FULL S P E E D (GO)

This command is used ot execute a program ni ful clock speed mode.

Syntax

GO starting address> ‹CR>

REGISTER DISPLAY (RG)

This command displays the contents of al the registers of 8031 controller.

Syntax

RG <CR>

MEMORY MAPPING

The 8031/8051 chip supports 64K bytes of program memory and 64K bytes of data memory.

That means the total memory which the 8031 can address physi- caly is 128K bytes. Since ni

a practical situation, the user may need the same memory area for Data as well as programs,

the system VMC-8031/8051/89C51 has been designed in a way that the same memory chip

can be used as program/data memory.

There are three memory sockets provided on the kit. The two sockets are pro- vided with the

memory R(AM &Monitor ROM) and one socket is free for the memory expanded by user.

The RAM area provided with the address range from 2000-3FFF. The addres of memory si

from 6000-7FFF.

VMC-8031/8051/89C51 monitor uses certain subroutines for its operation, which can also be

used by the user of his programs. The addresses of these routines and their descriptions are

given here

INTERRUPT

There are two external interrupts called INTO & INT are coming from CPU. Interrupt INTO

is used for keyboard and interrupt INT is free for the user. The different interrupts, Timer,

Serial Interface addresses are as follows

SAMPLE PROGRAMS

Sample Programs are given here to the user to understand the programming techniques of

8031/8051/89C51 microcontrollers.

Program-1

 “FLASHING DISPLAY OF SUPERB ON SEVEN SEGMENT DISPLAY ON EXECUTING THIS

PROGRAM FROM ADDRESS 2000H, "SUPERB" MES- SAGE FLASHES ON THE DISPLAY OF

THE KIT”.

ADDRESS CODE LABEL MNEMONIC OPERAND COMMENTS

2000 90 20 2E HERE: MOV DPTR,#202E ;SUPERB message

2003 12 06 F7 LCALL 06F7 ;display routine

2006 7B 00 MOV R3, #0

2008 7A 00 LOOP2: MOV R2, #0

200A DA FE LOOP1: DJNZ R2, ;delay code

200C DB FA DNJZ R2, 2008

200E 90 20 34 MOV DPTR,#2034 ;blank message

2011 12 06 F7 LCALL 06F7 ;display routine

2014 7B 00 MOV R3, #0

2016 7A 00 LOOP4: MOV R2, #0

2018 DA FE LOOP3: DJNZ R2, 2018 ;delay code

201A DB FA DJNZL R3, 2016

201C 80 E2 SJMP 2000

202E 49 83 31 61 F5 C1ADRI: DFB 49,83,31, 61,F5,C1 ;data superb

2034 FF FF FF FF FF FFADR2: DFB FF, FF, FF, FF, FF, FF ; blank

display

Program- 2:

 Addition of 2 numbers and stored result at 3012 address.

ADDRESS OP CODE MNEMONIC COMMENTS

3000 78 04 MOV R0, #04H ;1ST number

3002 79 05 MOV R1, #05H ;2nd number

3004 E8 MOV A, R0

3005 29 ADD A, R1 ;adding result at A reg.

3006 90 30 12 MOV DPTR, #3012H ;result at 3012 address

 3009 F0 MOVX @DPTR, A

300A 80 FE SJMP 300A

The result at 3012 address will be 09H.

Program- 3:

Subtraction of 2 numbers and stored result at 3012 address.

ADDRESS OP CODE MNEMONIC COMMENTS

3000 78 05 MOV R0, #05H ;1ST number

3002 79 04 MOV R1, #04H ;2nd number

3004 C3 CLR C

3005 E8 MOV A, R0

3006 99 SUBB A, R1 ;adding result at A reg.

3007 90 30 12 MOV DPTR, #3012H ;result at 3012 address

300A F0 MOVX @DPTR, A

300B 80 FE SJMP 300B

The result at 3012 address will be 01H.

Program- 4:

Division of 2 numbers and stored result at 3012 address.

ADDRESS OP CODE MNEMONIC COMMENTS

3000 78 08 MOV R0, #08H ;1ST number

3002 79 02 MOV R1, #02H ;2nd number

3004 E8 MOV A, R0

3005 89 F0 MOV B, R1

3007 84 DIV AB ;divide

3008 90 30 12 MOV DPTR, #3012H ;div result at 3012

address

300B F0 MOVX @DPTR, A

300C 80 FE SJMP 300C

The result at 3012 address will be 04H.

Program- 5:

 Multiplecation of 2 numbers and stored result at 3012 address.

ADDRESS OP CODE MNEMONIC COMMENTS

3000 78 08 MOV R0, #03H ;1ST number

3002 79 02 MOV R1, #02H ;2nd number

3004 E8 MOV A, R0

3005 89 F0 MOV B, R1

3007 A4 MUL AB ;multiplecation

3008 90 30 12 MOV DPTR, #3012H ;mul. result at 3012

address

300B F0 MOVX @DPTR, A

300C 80 FE SJMP 300C

The result at 3012 address will be 06H.

	Microprocessor - 8086 Pin Configuration
	8086 Pin Diagram

	SYSTEM INTRODUCTION
	GENERAL DESCRIPTION
	SYSTEM SPECIFICATION
	SYSTEM CAPABILITIES
	HARDWARE DESCRIPTION
	GENERAL

	COMMAND DESCRIPTION
	KEYBOARD DESCRIPTION
	LIST O F COMMANDS

	ONBOARD INTERFACES
	GENERAL DETAILS OF INTERFACES
	RS-232C INTERFACE

	SERIAL MODE INTERFACE
	SERIAL COMMANDS
	DUMP DATA MEMORY (DD)
	SAMPLE PROGRAMS

