

Practical -10

Objective: Create program to develop Android App for the WiFi connection with Node MCU

and monitor the sensor data using Node MCU.

Introduction: Nowadays, it has become common practice to use mobile phones as a remote

control in IoT applications and for this, there are several development alternatives such as:
 Android Studio

 App Inventor

 Scratch

 Swift (Apple)

 Kotlin

 etc.

What we are going to show here is an alternative solution for developing native mobile applications

using HTML5 and known technologies such as:

Jquery: JavaScript library that facilitates the manipulation of elements and events in WEB pages.

Onsen UI: Framework of responsive CSS components for developing mobile web applications

with technologies such as HTML5, CSS, JavaScript.

PhoneGap: Framework for generating hybrid mobile applications from web applications,

Hybrid mobile applications are applications that combine native components and web components.

From the user's point of view, a hybrid application is identical to a native application. However,

internally, a hybrid application uses a web view component that contains most of the content and

logic of the application.

The Project:
To test the tools described above, we will develop a small project as follows:

 A NodeMCU board connected to three LEDs

 This board will connect to the wi-fi network and run a web server that will wait for the

requests of a client.

 The client will be our remote control app on the mobile phone that will display a screen to

control the three LEDs. LED 1 and 2 can be turned on and off with a button. Already, the

LED 3, we will control its luminosity through a slider.

https://developer.android.com/studio/?hl=pt-br
http://appinventor.mit.edu/explore/
https://scratch.mit.edu/
https://www.apple.com/br/swift/
https://kotlinlang.org/
https://onsen.io/
https://phonegap.com/

Step 1: The Prototype
The following components will be needed to assemble our experiment:

 Protoboard

 NodeMCU or compatible card (Wemos, MKR1000, ESP8266 Standalone)

 Three colored LEDs

 Three 220 Ohms resistors

 Wires jumpers

 The assembly will look like this:

Step 2: NodeMCU Sketch
The function of our sketch will basically be to connect to the Wi-Fi network and create a web

server that will be waiting for and responding to requests with LED control commands.

Let's use Arduino's own IDE for development. If you have not already done so, you will need to

configure the environment with the ESP8266 software. To do this, follow the steps in this article:

NodeMCU with the Arduino IDE.

Let's now look at the source code with the comments:

Arduino's programming: Fine name wifi_rc.ino

*/

#include <ESP8266WiFi.h>

#include <WiFiClient.h>

#include <ESP8266WiFiMulti.h>

#include <ESP8266mDNS.h>

#include <ESP8266WebServer.h>

ESP8266WiFiMulti wifiMulti; // For multiple wi-fi configuratiosn

ESP8266WebServer server(80); // Create a webserver object that listens for HTTP request on port

80

// function prototypes for HTTP handlers

void handleRoot();

void handleRequest();

void handleNotFound();

void setup(void){

 delay(1000);

 pinMode(5, OUTPUT); //Led 1

 pinMode(4, OUTPUT); //Led 2

 digitalWrite(5, 0);

 digitalWrite(4, 0);

 analogWriteRange(100); //Led 3 (PWM)

 analogWrite(0, 0);

 Serial.begin(9600); // Start the Serial communication to send messages to the computer

 delay(10);

 Serial.println('\n');

 wifiMulti.addAP("ssid1", "password1"); // add Wi-Fi networks you want to connect to

 wifiMulti.addAP("ssid2", "password2");

 Serial.println("Connecting...");

 int i = 0;

 while (wifiMulti.run() != WL_CONNECTED) { // Wait for the Wi-Fi to connect: scan for Wi-Fi

networks, and connect to the strongest of the networks above

 delay(250);

 Serial.print('.');

https://www.codeproject.com/Articles/1073160/Programming-the-ESP-NodeMCU-with-the-Arduino-IDE

 }

 Serial.println('\n');

 Serial.print("Connected to ");

 Serial.println(WiF.SSID()); // Tell us what network we're connected to

 Serial.print("IP address:\t");

 Serial.println(WiFi.localIP()); // Send the IP address of the ESP8266 to the computer

 if (MDNS.begin("esp8266")) { // Start the mDNS responder for esp8266.local

 Serial.println("mDNS responder started");

 } else {

 Serial.println("Error setting up MDNS responder!");

 }

 server.on("/", HTTP_GET, handleRoot); // Call the 'handleRoot' function when a client

requests URI "/"

 server.on("/command", HTTP_POST, handleRequest); // Call the 'handRequest' function when a

POST request is made to URI "/command"

 server.onNotFound(handleNotFound); // When a client requests an unknown URI (i.e.

something other than "/"), call function "handleNotFound"

 server.begin(); // Actually start the server

 Serial.println("HTTP server started");

 return;

}

void loop(void){

 server.handleClient(); // Listen for HTTP requests from clients

 return;

}

void handleRoot() { // When URI / is requested, send a standard web page

 server.send(200, "text/html", "Wi-fi Remote Control Example");

 return;

}

void handleNotFound(){

 server.send(404, "text/plain", "404: Not found"); // Send HTTP status 404 (Not Found) when

there's no handler for the URI in the request

 return;

}

void handleRequest() { // If a POST request is made to URI /command

 // Validate parameters

 if(!server.hasArg("pin") || !server.hasArg("value") || server.arg("pin") == NULL ||

server.arg("value") == NULL) {

 server.send(400, "text/plain", "400: Invalid Request"); // The request is invalid, so send

HTTP status 400

 return;

 }

 // Get de parameters: pin and value

 String temp = "";

 temp = server.arg("pin");

 int pin = temp.toInt();

 temp = server.arg("value");

 int value = temp.toInt();

 Serial.println(pin);

 Serial.println(value);

 if (pin >= 0 && pin < 17 && value >= 0 && value <= 100) {

 if (pin == 0) {

 analogWrite(pin, value);

 } else {

 digitalWrite(pin, value);

 }

 }

 server.send(200, "text/html", "Wi-fi Remote Control Example");

 return;

}

Points of Interest:
 The WiFiMulti lib allows you to configure the authentication of multiple wi-fi networks,

making connection easy. Replace ssid and password according to your network.

 The Lib mDNS allows naming a DNS for the Esp Local Network. In this case, we're not

using this feature because Android does not support it.

 The handleClient method starts a loop that acts as a listener for web requests.

 There are three functions that are responsible for dealing with requests coming from the cell

phone:

 The handleNotFound function is fired when the URI was not found.

 The handleRoot function fires when it receives a standard GET request. In our

case, such respond is despised.

 The handleRequest function triggered by the server.on condition is responsible

for handling the POST requests triggered by the remote control in the mobile phone. At

this point, we will validate the parameters sent by the remote control and take the

appropriate action.

Step 3: WEB Application:

For the development of the remote control application, we will have to download the libraries

JQuery and OnsenUI and unpack them in the respective folders, according to the structure

described below:

 app

config.xml← Phonegap Configuration file

◦ www

index.html← Main HTML file

▪ assets

 img ← Here are the App Icons

icon-128.png

icon-256.png

 js

wifi_rc.js ← Js file with App Logic

 lib

◦ Jquery ← Unzip Jquery here

◦ Onsenui ← Unzip the Onsenui here

 At this moment, we will worry about the files index.html and wifi_rc.js responsible for the

presentation and programming of our remote control, as below:

index.html

<!--

 Wi-fi Remote Control with JQuery and Onsen UI

 Demo by José Cintra

 www.josecintra.com/blog

-->

<!DOCTYPE html>

<html lang="pt-br">

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

 initial-scale=1, shrink-to-fit=no">

 <meta name="Author" content="José Cintra"

 <link rel="stylesheet" href="assets/lib/OnsenUI/css/onsenui.min.css">

 <link rel="stylesheet" href="assets/lib/OnsenUI/css/onsen-css-components.min.css">

 </head>

 <body>

 <ons-page modifier="material">

 <ons-toolbar modifier="material">

 <div class="center">Wi-Fi Remote Control</div>

 </ons-toolbar>

 <ons-card modifier="material">

 <div class="content">

 <ons-list modifier="material">

 <ons-list-item modifier="material">

 <div class="center" >

 LED 1 <label id="led1v">OFF</label>

 </div>

 <div class="right">

 <ons-switch id="led1" class="sw" modifier="material"></ons-switch>

 </div>

 </ons-list-item >

 <ons-list-item modifier="material">

 <div class="center" >

 LED 2 <label id="led2v">OFF</label>

 </div>

 <div class="right">

 <ons-switch id="led2" class="sw" modifier="material"></ons-switch>

 </div>

 </ons-list-item>

 <ons-list-item modifier="material">

 <div class="center">

 LED 3 <label id="led3v">0</label>%

 </div>

 <div class="right">

 <ons-range id="led3" class="rg" modifier="material"

 style="width: 100%;" value="0" max = "100" ></ons-range>

 </div>

 </ons-list-item>

 </ons-list>

 </div>

 </ons-card>

 </ons-page>

 <!-- Javascript -->

 <script src="assets/lib/OnsenUI/js/onsenui.min.js"></script>

 <script src="assets/lib/jquery/jquery-3.3.1.min.js"></script>

 <script src="assets/js/wifi_rc.js"></script>

</body>

</html>

wifi_rc.js

$(function () {

 // Server address and pin numbers of the board (ESP8266/32 and compatibles)

 let addr = "http://192.168.0.33/command";

 let pins = new Map([

 ['#led1', '05'],

 ['#led2', '04'],

 ['#led3', '00'],]);

 // Click Event on switch Class

 $('.sw').on('click', function (e) {

 let onoff = ['OFF','ON'];

 let id = "#" + $(this).attr("id"); // Get the id of the control

 let pin = pins.get(id); // Pin number

 let value = String(+$(id).prop('checked')); // On or Off

 $(id + 'v').html(onoff[value]);

 sendAjax(addr, pin, value);

 });

 // Input event on range class

 $('.rg').on('input', function (e) {

 let id = "#" + $(this).attr("id"); // Get the id of the control

 let value = String($(id).val()); // Input range

 $(id + 'v').html(value); // Notification

 });

$('.rg').on('change', function (e) {

 let id = "#" + $(this).attr("id"); // Get the id of the control

 let pin = pins.get(id); // Pin number

 let value = String($(id).val()); // Input range

 sendAjax(addr, pin, value);

 });

});

function sendAjax(addr, p, v) {

 $.ajax({

 method: "POST",

 url: addr,

 data: {pin: p, value: v}

 });

}

Points of Interest:

1.In the index.html file is the whole presentation part of the application with CSS elements made

available by the OnsenUI framework.

2.LEDs 1 and 2 will be controlled by a switch button and LED 3 by a range control. It is

important to note the id and class attributes that will be used in the JS script.

3.The JavaScript code of the wifi_rc.js file adopts the ES6 standard.

4.The wifi_rc.js file highlights the function() event that occurs only once after page loading.

This is where we program the actions that respond to the events of the controls.

5.To represent the pin numbers in the NodeMCU, we use a MAP structure. This information will be

passed, along with the values of the controls, to the sendAjax method and sent to the web server

of the board.

Step 4: Mobile Application

Finally, at this point, we will generate our mobile application to be installed on the mobile phone.

In order for our HTML5 application to be installed as a native app, you will need to use the

Phonegap build tools. The simplest way to do this is to use the cloud compilation services of

Phonegap Build.

The steps are as follows:

 Create an account in the Phonegap Build, service, choosing a paid or free plan.

 Create the application icons that will be displayed on your phone.

 Create a config.xml file with the required settings.

https://build.phonegap.com/
https://build.phonegap.com/

 Compress all files and upload to compilation.

 Request compilation of the application.

 Choose the desired platform (Android, iPhone or Microsoft) and download the compiled

app for this platform.

Note: The icon files must be in png format, in sizes 128 × 128 and 256 × 256.

The following is an example config file:

config.xml

<?xml version="1.0" encoding="UTF-8" ?>

<widget id="com.josecintra.wifi_rc" version="1.0.0"

 xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0">

 <name>Wi-fi Remote Control</name>

 <description>Example of building a wi-fi remote control with

 HTML5/JQuery/Onsen UI and Phonegap. It will be used to control IoT devices,

 such as NodeMCU and compatibles</description>

 <author href="http://www.josecintra.com/blog"

 email="josecintra@josecintra.com">Jose Cintra</author>

 <icon src="www/assets/img/icon-256.png" width="256"

 height="256" density="xxxhdpi" />

 <icon src="www/assets/img/icon-128.png" width="128"

 height="128" density="xhdpi" />

 <preference name="android-targetSdkVersion" value="26" />

 <preference name="orientation" value="portrait" />

 <preference name="fullscreen" value="true" />

 <preference name="DisallowOverscroll" value="true" />

 <config-file parent="UIStatusBarHidden" platform="ios"

 target="*-Info.plist"><true/></config-file>

 <config-file parent="UIViewControllerBasedStatusBarAppearance"

 platform="ios" target="*-Info.plist"><false/></config-file>

 <preference name="deployment-target" value="10.0" />

 <preference name="android-minSdkVersion" value="21" />

 <access origin="*" />

 <plugin name="cordova-custom-config" />

 <plugin name="cordova-plugin-file" />

 <plugin name="cordova-plugin-media" />

 <plugin name="cordova-plugin-statusbar" />

 <plugin name="cordova-plugin-whitelist" />

 <engine name="ios" />

 <engine name="android" />

</widget>

Points of Interest

The config.xml file contains all the information needed to generate the app. Among them, we

highlight:

 name: Name of the app

 description: App description

 author: Info about the author of the app

 icon: Name of the icons that will identify the app on the mobile phone

 Orientation: The app can be displayed in portrait, landscape mode. If this

parameter are not informed, the app will adapt to the inclination of the cell phone.

 access origin: Defines which urls the application can access

Apart from these, there are dozens of other settings. An important point is the choice of plugins that

allow you to add additional functionality to the application, such as access to the camera, gps, and

other native features of the phone. For more details on the build process, see this link.

https://loiane.com/2013/07/usando-phonegap-build-build-automatico-para-6-plataformas-de-uma-so-vez/

Step 5: Installing the App: In the previous step, we've generated an app that can be installed

on your phone or made available for download on app stores. In our case, we generated an Android

app with the apk extension. To test this app on mobile without going through the app store, we

need to configure Android to allow the installation of "Unknown sources" apps. Usually, this option

is in the security section.

After that, just copy the app to your phone. This can be done in various ways such as USB, Kies,

Wi-Fi or via an Internet link. Android itself will take care of the installation.

