Experiment No. 6

SCHMITT TRIGGER

Aim: To design and setup a Schmitt trigger, plot the input output waveforms and measure V_{UT} and V_{LT}.

Objectives: After completion of this experiment, student will be able to design and setup a Schmitt trigger circuit using OP AMP.

Equipments/Components:

S1 .No	Name and Specification	Quantity required
1	Dual power supply $+/-15 \mathrm{~V}$	1
2	Function generator $(0-1 \mathrm{MHz})$	1
3	Oscilloscope	1
4	Bread board	1
5	IC 741C	1
6	Resistor	3
7	Probes and connecting wires	As required.

Theory:

It is a regenerative comparator or it is a comparator with hysteresis. This circuit uses positive feedback and the op-amp is operated in saturation. The output can take two values

+ Vsat and - Vsat. When output $=+V$ sat, the voltage appearing at the non-inverting terminal is $V_{\text {UT }}$ or $\mathrm{UTP}=+\operatorname{Vsat}\left(\mathrm{R}_{1} / \mathrm{R}_{1}+\mathrm{R}_{2}\right)$ called the upper threshold point. Similarly When output $=-$ Vsat, the voltage appearing at the non-inverting terminal is V_{LT} or $\operatorname{LTP}=-\operatorname{Vsat}\left(R_{1} / R_{1}+R_{2}\right)$ called the lower threshold point. When Vin is greater than UTP, the output will switch from + Vsat to $-V s a t$. Similarly When Vin is less than LTP; the output will switch from -Vsat to + Vsat which is shown in the graph. The difference between UTPLTP is called hysteresis. Hysteresis avoids false triggering of the circuit by noise. Hysteresis curve is the plot of Vo versus Vin. Schmitt trigger circuit is used to convert any irregular wave into square wave.

Procedure:

1. Check the components.
2. Setup the circuit on the breadboard and check the connections.
3. Switch on the power supply.
4. Give $\mathrm{V}_{\mathrm{i}}=10 \mathrm{Vpp} / 1 \mathrm{KHz}$ sine wave.
5. Observe input and output on two channels of oscilloscope simultaneously.
6. Note down and draw the input and output waveforms on the graph.

Circuit Diagram

Design:

$$
\begin{aligned}
& \text { UTP }=+\mathrm{Vsat}\left(\mathrm{R}_{1} / \mathrm{R}_{1}+\mathrm{R}_{2}\right) \\
& \text { Let } \quad \mathrm{UTP}=+3 \mathrm{~V} \text { and } \mathrm{LTP}=-3 \mathrm{~V}, \\
& \text { Vsat }=+13 \mathrm{~V} \\
& \text { UTP, }+3=+13(\\
& \left.\mathrm{R}_{1} / \mathrm{R}_{1}+\mathrm{R}_{2}\right) \text { Let } \quad \mathrm{R}_{1}=1 \mathrm{~K} \Omega \\
& \text { Then } \mathrm{R}_{2}=3.3 \mathrm{~K} \Omega
\end{aligned}
$$

Observations:

$$
\begin{aligned}
& \text { UTP= } \\
& \text { LTP }=
\end{aligned}
$$

Graph:

Result:

