Experiment No. 5

ASTABLE MULTIVIBRATORS USING OP AMP

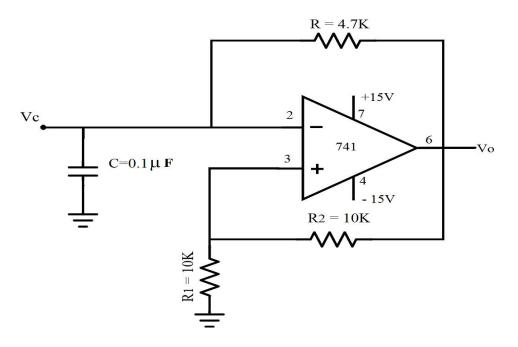
Aim: To design and setup symmetrical and asymmetrical astable multivibrators using Opamp 741, plot the waveforms and measure the frequency of oscillation

Objectives: After completion of this experiment, student will be able to design and setup an astable multivibrators circuit using OP AMP.

Equipments/Components:

Sl. No	Name and Specification	Quantity required	
1	Dual power supply +/- 15V	1	
2	Function generator (0- 1MHz)	1	
3	Oscilloscope	1	
4	Bread board	1	
5	IC 741C	1	
6	Resistor	5	
7	Capacitor 0.1µF	1	
8	Diode 1N4001	2	
9	Probes and connecting wires	As required.	

Theory:


In this circuit, the opamp is operated in saturation mode and the output swings between +Vsat and –Vsat giving square wave output. This circuit is also called free running oscillator or square wave generator. A positive feedback with feedback factor $\beta = R_1 / (R_1 + R_2)$ is provided to the non-inverting terminal. When Vo= +Vsat, the capacitor C starts to charge to + Vsat through R. when the capacitor voltage crosses + β Vsat, output switches from +Vsat to –Vsat. Now the voltage appearing at the non-inverting terminal is $-\beta$ Vsat and capacitor discharges through R towards -Vsat. When the capacitor voltage crosses $-\beta$ Vsat, the output switches from –Vsat to + Vsat and this process continues to generate square wave output with time period T=T_{on} + T_{off}= 2RC ln[(1+ β)/(1- β)]. In asymmetrical astable multivibrators, the charging and discharging time of capacitor is made unequal to get asymmetrical square wave with different T_{on} and T_{off}.

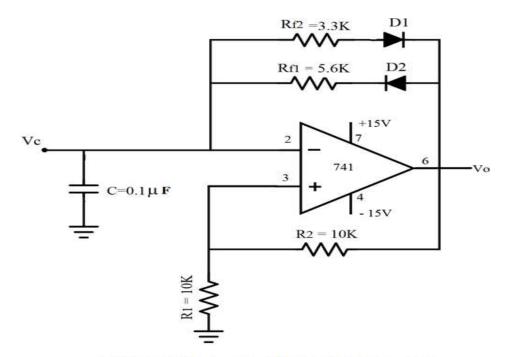
Procedure:

- 1. Check the components.
- 2. Setup the symmetric astable multivibrator circuit on the breadboard and check the connections.
- 3. Switch on the power supply.
- 4. Observe output and capacitor voltage on two channels of the oscilloscope simultaneously.
- 5. Draw the waveforms on the graph.
- 6. Measure the frequency of oscillation and duty cycle.
- 7. Repeat the procedures for asymmetric astable multivibrator.

a) SYMMETRICAL ASTABLE MULTIVIBRATOR

Circuit Diagram:

SYMMETRICAL ASTABLE MULTIVIBRATOR


Design:

	Given	f = 1 KHz		
	So	T = 1/f = 1ms		
	And	$\beta = \mathbf{R}_1 / (\mathbf{R}_1 + \mathbf{R}_2)$		
		Let $R_1 = 10K\Omega$,	and	$R_2 = 10 K \Omega$
		Then $\beta = 0.5$		
Therefore T= 2.2RC				
Let $C = 0.1 \mu F$ Then $R =$				

4.7KΩ

b) ASYMMETRCAL ASTABLE MULTIVIBRATOR

Circuit Diagram:

ASYMMETRICAL ASTABLE MULTIVIBRATOR

Design:

Given	f = 1 KHz

So $T = T_{on} + T_{off} = 1/f = 1ms$

Also Duty cycle = $T_{on}/(T_{on}+T_{off}) = 0.66$ or 66% Solving above two equations, $T_{on} = 0.66$ ms $T_{off} = 0.33$ ms

For β =0.5, $T_{on}=1.1R_{fl}C = 0.66ms$ Let $C = 0.1\mu F$ Then $R_{fl} = 6.2K\Omega = 5.6K\Omega$ (Std) Similarly $T_{off} = 1.1R_{f2}C = 0.33ms$ Then $R_{f2} = 3K\Omega = 3.3 K\Omega$ (Std)

bservation:

a) Symmetrical astable multivibrators

$$V_o(p-p)=?$$

f = ?
Duty cycle = ?

b) Asymmetrical astable multivibrators

 $V_o(p-p)=?$ f = ? Duty cycle = ?

Graph:

a) Symmetrical astable multivibrators

b) Asymmetrical astable multivibrators

Result:

MONOSTABLE MULTIVIBRATOR USING OP AMP

Aim: To design and setup a monostable multivibrator using Op-amp 741 and

(i) Plot the waveforms (ii) Measure the time delay

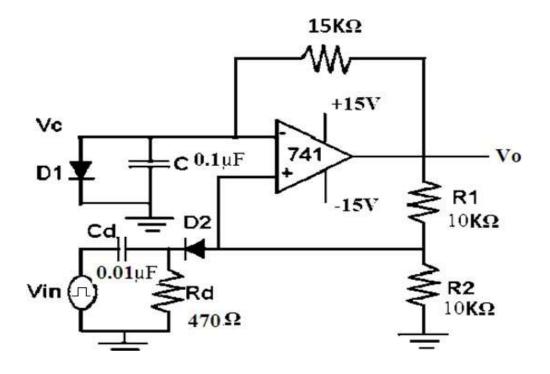
Objectives: After completion of this experiment the students are able to design and set up the monostable multivibrator circuit and delay circuits.

Equipments/Components

Sl. No.	Name and spification		Quantity
1	Dual Power Supply	+/-15V	1
2	Resistors	1	4
3	Capacitor	0.1µF;0.01µF	1 each
4	ΙC μΑ 741		1
5	Function generator	(0-1)MHz	1
6.	Oscilloscope		1
7.	Diode	1N 4001	2
8	Bread board		1
9	Connecting wires and probes		As required

Theory:

The monostable multivibrator is also called as one shot multivibrator. The circuit produces a single pulse of specified duration in response to each external trigger pulse. It always has one stable state (+Vsat). When an external trigger is applied, the output state changes and the new state is called quasi stable state (-Vsat). The circuit remains in this state for a fixed interval of time and then it returns to the original state after this interval. This time interval is determined discharging of the capacitor from 0.7V to $-\beta$ Vsat.The time period of quasi stable state or the delay is given by


T = 0.69 RC

Procedure:

- 1. Check the components.
- 2. Setup the monostable multivibrator circuit on the breadboard and check the connections.
- 3. Switch on the power supply.

- 4. Put the function generator output to square wave mode. Adjust the amplitude to 5V.
- 5. Observe trigger input, output and capacitor voltage on different channels of the oscilloscope simultaneously.
- 6. Draw the waveforms on the graph.
- 7. Measure the time delay.

Circuit Diagram:

Design:

Time Period T= 0.69RC Let T = 1ms; and C = 0.1μ F. Then R = 15K Ω Feedback factor $\beta = R_2/(R_1+R_2)$ Let $\beta = 0.5$ or 1/2 $R_2/(R_1+R_2) = 1/2$

If $R_1 = 10K\Omega$; $R_2 = 10K\Omega$

For triggering circuit

 $R_dC_d=0.0016t$ Let t=3ms and $C_d=0.01 \ \mu F$; then $Rd=470\Omega \ D_1 \ \& \ D_2$ are diodes 1N 4001

Observations:

Measured time period or delay =?

Graph:

Result: