Experiment No 3

INTEGRATOR

Aim: To design and setup an integrator circuit using OP AMP 741C and plot its pulse response.

Objectives: After completion of this experiment, student will be able to design and setup an integrator circuit using OP AMP.

Equipments/Components:

Sl. No	Name and Specification	Quantity required
1	Dual power supply +/- 15V	1
2	Function generator (0-1MHz)	1
3	Oscilloscope	1
4	Bread board	1
5	IC 741C	1
6	Resistor	1
7	Capacitor 0.01µF	1
8	Probes and connecting wires	As required.

Theory:

It is a closed loop op-amp circuit which performs the mathematical operation of integration. That is the output waveform is the integral of the input voltage and is given by $Vo = (-1/R_fC) \int V_{in} dt$. The integrator circuit is constructed from basic inverting amplifier by replacing the feedback resistance R_f with capacitor C. This circuit also works as low pass filter.

Procedure:

- 1. Check the components.
- 2. Setup the circuit on the breadboard and check the connections.
- 3. Switch on the power supply.
- 4. Give $V_i = 2Vpp$, 1KHz square wave.
- 5. Keep the oscilloscope in AC coupling mode.
- 6. Observe input and output on two channels of the oscilloscope simultaneously.

7. Draw the input and output waveforms on the graph.

Circuit Diagram:

Design:

Given f =1 KHz So T = 1/f = 1msDesign equation is T = $2\pi R_i C$ Let C = $0.01\mu F$ Then $R_i = 15K\Omega$

Take $R_f = 10R_i = 150K\Omega$

Graph:

Result:

DIFFERENTIATOR

Aim: To design and set up a Differentiator circuit using OP AMP 741C and plot their pulse response.

Objectives: After completion of this experiment, student will be able to design and setup a differentiator circuit using OP AMP.

Equipments/Components:

Sl. No	Name and Specification	Quantity required
1	Dual power supply +/- 15V	1
2	Function generator (0- 1MHz)	1
3	Oscilloscope	1
4	Bread board	1
5	IC 741C	1
6	Resistor	1
7	Capacitor	1
8	Probes and connecting wires	As required.

Theory:

It is an opamp circuit which performs the mathematical operation of differentiation. That is the output waveform is the derivative or differentia l of the input voltage. That is $Vo= - R_f Cd(V_{in})/dt$. The differentiator circuit is constructed from basic inverting amplifier by replacing the input resistance R_i with capacitor C. This circuit also works as high pass filter.

Procedure:

- 1. Check the components.
- 2. Setup the circuit on the breadboard and check the connections.
- 3. Switch on the power supply.
- 4. Keep the oscilloscope in AC coupling mode.
- 5. Give $V_i = 2Vpp$, 1KHz square wave.
- 6. Observe input and output on two channels of the oscilloscope simultaneously.
- 7. Note down and draw the input and output waveforms on the graph.

Design:

Given f = 1 KHzSo T = 1/f = 1 msDesign equation is $T = 2\pi R_f C$ Let $C = 0.01 \mu F$ Then $R_f = 15 K \Omega$ Let $Ri = Rf/10 = 1.5 K \Omega$

Graph