Experiment No 2

ADDER (SUMMING) AMPLIFIER

Aim: To design and setup a summing amplifier circuit with OP AMP 741C for a gain of 2 and verify the output.

Objectives: After completion of this experiment, student will be able to design and setup a summing amplifier using OP AMP.

Sl .No	Name and Specification	Quantity required
1	Dual power supply +/- 15V	1
2	DC power source 1.5V	2
3	Function generator (0- 1MHz)	1
4	Oscilloscope	1
5	Bread board	1
6	IC 741C	1
7	Resistor	3
8	Probes and connecting wires	As required.

Theory:

Op-amp can be used to design a circuit whose output is the sum of several input signals. Such a circuit is called a summing amplifier or an adder. Summing amplifier can be classified as inverting & non-inverting summer depending on the input applied to inverting & non-inverting terminals respectively. Circuit Diagram shows an inverting summing amplifier with 2 inputs. Here the output will be amplified version of the sum of the two input voltages with 180° phase reversal.

$$V_o = - (R_f / R_i)(V_1 + V_2)$$

Procedure

- 1. Check the components.
- 2. Setup the circuit on the breadboard and check the connections.
- 3. Switch on the power supply.
- 4. Give $V_1 = V_2 = +1.5V$ DC with polarity as shown in fig.1.
- 5. Make sure that the CRO selector is in the D.C. coupling position.

- 6. Observe input and output on two channels of the oscilloscope simultaneously.
- 7. Note down and draw the input and output waveforms on the graph.
- 8. Verify that the output voltage is -6V DC
- 9. Repeat the procedure with $V_1 = 1 \text{Vpp} / 1 \text{ KHz}$ sine wave and $V_2 = +1.5 \text{Vdc}$ as shown in fig2.

RESULT

Circuit diagram

Design:

The output voltage of an inverting summing amplifier is given by V_{o} = -($R_{\rm f}/\,R_{\rm i}\,)(V_{1}+V_{2})$

Let $R_i = 1.1 K \Omega$

Then $R_f = 2.2K\Omega$

Then $V_0 = -2(V_1+V_2)$

Observations:

Part1:

Part 2:

 V_1 = 1Vpp sine wave V_2 = 1.5 DC Then Vo=

Graph:

SUBSTRACTOR (DIFFERENCE) AMPLIFIER

Aim: To design and setup a difference amplifier circuit with OPAMP IC 741C for a gain of 2 and verify the output.

Objectives: After completion of this experiment, student will be able to design and setup a difference amplifier using OP AMP.

Equipments/Components:

Sl. No	Name and Specification	Quantity required
1	Dual power supply +/- 15V	1
2	DC power source 1.5V	1
3	Function generator (0-1MHz)	1
4	Oscilloscope	1
5	Bread board	1
6	IC 741C	1
7	Resistor	3
8	Probes and connecting wires	As required.

Theory:

A difference amplifier is a circuit that gives the amplified version of the difference of the two inputs, Vo =A(V1-V2), Where V1 and V2 are the inputs and A is the voltage gain. Here input voltage V1 is connected to non-inverting terminal and V2 to the inverting terminal. This is also called as differential amplifier. Output of a differential amplifier can be determined using super position theorem. When V₁=0, the circuit becomes an inverting amplifier with input V₂ and the resulting output is V₀₂= -Rf /Ri (V₂). When V₂=0, the circuit become a non-inverting amplifier with input V₁ and the resulting output is V₀₁= Rf/Ri(V₁). Therefore the resulting output according to super position theorem is

$$V_0 = V_{01} + V_{02} = Rf/Ri(V1-V2)$$

Procedure

- 1. Check the components.
- 2. Setup the circuit on the breadboard and check the connections.
- 3. Switch on the power supply.
- 4. Give $V_1 = +1.5V$ DC with polarity as shown.

- 5. Give $V_2 = 1$ Vpp/ 1 KHz sine wave.
- 6. Make sure that the oscilloscope coupling selector is in the D.C. position.
- 7. Observe input and output on oscilloscope simultaneously.
- 8. Note down and draw the input and output waveforms on the graph.

Circuit Diagram

Design:

Given the gain = 2

 $Vo = V_{01} + V_{02} = Rf/Ri(V1-V2)$

That is Rf / Ri = 2Let $Ri = 1.1K\Omega$ Then $Rf = 2.2K\Omega$

Observations:

 $V_1 = 1.5 \text{ DC}$

 $V_2 = 1$ Vpp sine wave

Then Vo = ?

Graph: