Experiment No. 10

RC PHASE SHIFT OSCILLATOR USING OP AMP

Aim: To Design and setup a RC phase shift oscillator using Op-Amp 741 and (i)
Plot the output waveform (ii) Measure the frequency of oscillation
Objectives: After completion of this experiment the students are able to design and set up the RC phase shift oscillator for desired frequency.

Equipments/Components

Sl. No.	Name and specification	
1	Dual Power Supply	Quantity
2	Resistors	1
3	Capacitor	$0.01 \mu \mathrm{~F}$
4	IC	$\mu \mathrm{A} 741$
5	Oscilloscope	3
6	Bread board	1
7	Connecting wires and probes	1

Theory:

RC phase shift oscillator uses op-amp, in inverting amplifier mode and the circuit generates its own output signal. It consists of an op-amp as an amplifier and 3 RC cascaded network as the feedback circuit. Since the op-amp is used in the inverting mode, any signal that appears at the inverting terminal is shifted by 180° at the output. An additional 180° phase shift required for oscillation is provided by the cascaded RC network. Thus the total phase shift around the circuit is 360° or 0°. At some specific frequency, the phase shift of the cascaded RC network is exactly 180° and feedback factor is $1 / 29$. If the gain of the amplifier is 29 , the total loop gain of the circuit becomes 1 . The circuit will oscillate at this specific frequency and is given by

$$
f_{\text {cscillation }}=\frac{1}{2 \pi R C \sqrt{6}}
$$

Procedure:

1. Check the components.
2. Setup the RC phase shift oscillator circuit on the breadboard .
3. Switch on the power supply.
4. Observe output voltage on oscilloscope.
5. Draw the waveforms on the graph.
6. Measure the frequency of oscillation .

Result:

Circuit Diagram:

$$
f_{\text {oscillation }}=\frac{1}{2 \pi R C \sqrt{6}}
$$

Design:

$$
\begin{aligned}
& \text { Let } \mathrm{f}=1 \mathrm{KHz}, \quad \text { and } \mathrm{C}=0.01 \mu \mathrm{~F} \\
& \mathrm{R}=6.8 \mathrm{~K} \Omega \\
& \quad \text { Gain }=29 \\
& \mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1}=29 \\
& \text { If } \mathrm{R} 1=3.3 \mathrm{~K} \Omega ; \mathrm{Rf}=95.7 \mathrm{~K} \Omega \text { Use } 100 \mathrm{~K} \Omega \text { pot }
\end{aligned}
$$

Result

