Experiment No. 10

RC PHASE SHIFT OSCILLATOR USING OP AMP

Aim: To Design and setup a RC phase shift oscillator using Op-Amp 741 and (i) Plot the output waveform (ii) Measure the frequency of oscillation

Objectives: After completion of this experiment the students are able to design and set up the RC phase shift oscillator for desired frequency.

Equipments/Components

Sl. No.	Name and specification	Quantity
1	Dual Power Supply +/-15V	1
2	Resistors	5
3	Capacitor 0.01µF	3
4	IC μA 741	1
5	Oscilloscope	1
6	Bread board	1
7	Connecting wires and probes	As required

Theory:

RC phase shift oscillator uses op-amp, in inverting amplifier mode and the circuit generates its own output signal. It consists of an op-amp as an amplifier and 3 RC cascaded network as the feedback circuit. Since the op-amp is used in the inverting mode, any signal that appears at the inverting terminal is shifted by 180° at the output. An additional 180° phase shift required for oscillation is provided by the cascaded RC network. Thus the total phase shift around the circuit is 360° or 0° . At some specific frequency, the phase shift of the cascaded RC network is exactly 180° and feedback factor is 1/29. If the gain of the amplifier is 29, the total loop gain of the circuit becomes 1. The circuit will oscillate at this specific frequency and is given by

$$f_{\text{oscillation}} = \frac{1}{2\pi RC\sqrt{6}}$$

Procedure:

- 1. Check the components.
- 2. Setup the RC phase shift oscillator circuit on the breadboard.
- 3. Switch on the power supply.
- 4. Observe output voltage on oscilloscope.
- 5. Draw the waveforms on the graph.
- 6. Measure the frequency of oscillation .

Result:

Circuit Diagram:

$$f_{\rm oscillation} = \frac{1}{2\pi RC\sqrt{6}}$$

Design:

Let
$$f=1$$
 KHz, and $C=0.01\mu F$
$$R=6.8K\Omega$$

$$Gain=29$$

$$R_{f}/R_{1}=29$$
 If $R1=3.3K\Omega$; $Rf=95.7K\Omega$ Use $100K\Omega$ pot

Result