Experiment No. 5

Objective: Measurement of capacitance by Schering bridge **Apparatus Used:**

S. No.	Name of the apparatus	Quantity
1	Lab trainer kit	1
2	Multimeter	1
3	Unknown inductor	1

Theory: Schering bridge is one of the most important of the a.c. bridge. It is extensively used in measurement of capacitance.

At balance, $\{r1+1/(j\omega C1)\}$ $\{R4/(1+j\omega C4R4)\} = R3/(j\omega C2)$ $\{r1+1/(j\omega C1)\}$ $R4 = R3/(j\omega C2) * \{(1+j\omega C4R4)\}$ $r1R4 - \{(jR4)/(\omega C1)\} = \{(-jR3)/(\omega C2)\} + \{(R3R4C4)/(C2)\}$ Equating real and imaginary terms, r1 = R3C4/C2 and C1 = C2R4/R3**Circuit Diagram:**

Procedure:

- 1. Connect the circuit as shown in the figure.
- 2. Select any value of C1.
- 3. Connect the Multimeter between ground and output of imbalance amplifier.
- 4. Vary R4 and C4, from minimum position, in clockwise direction.
- 5. If the selection of C1 is correct the balance point can be obtained at minimum position.
- 6. If that is not the case, select another C1.
- 7. Calculate the Capacitance by substituting known values.

Observation Table:

S.NO	C4	C1	C2	R3	R4

Result: Hence the balanced condition of schering bridge is obtained and unknown value of capacitance is found.