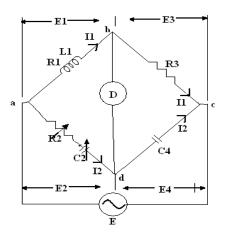
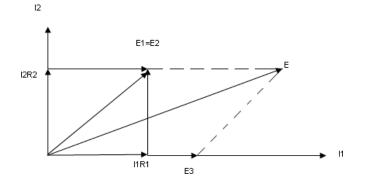
Experiment No. 4

Objective: Measurement of inductance by Owen's bridge **Apparatus Used:**

S. No.	Name of the apparatus	Quantity
1	Lab trainer kit	1
2	Multimeter	1
3	Unknown inductor	1


Theory: This bridge is used for measurement of an inductance in terms of capacitance.

Let L1 = unknown self-inductance of resistance R1, R3 = fixed non-inductive resistance, R2 = variable non-inductive resistance, C4 = fixed standard capacitor, C2 = variable standard capacitor.


At balance, $(R1+j\omega L1)(1/j\omega C4) = (R2 + 1/j\omega C2) R3$.

Separating the real and imaginary terms, we obtain: L1 = R2R3C4 and R1 = R3C4/C2.

Circuit Diagram

Phasor Diagram:

Procedure:

- 1. Connect the circuit as shown in the figure.
- 2. Connect the unknown inductance in L1.
- 3. Select any value of R1, R4 and C3..
- 4. Connect the multimeter between ground and output of imbalance amplifier.
- 5. Vary R1 and R4, from minimum position, in clockwise direction.
- 6. If the bridge does not balance change the value of C3.
- 7. Calculate the inductance L1 by substituting known values.

Observation Table:

S.NO	R2	R4	C3	L1=R2C3R4	True value of L1

Result: Actual and practical values of Inductances are found to be nearly equal.