Experiment No.3

Apparatus Used:				
S. No.	Name of the apparatus	Quantity		
1	Lab trainer kit	1		
2	Multimeter	1		
3	Unknown inductor	1		

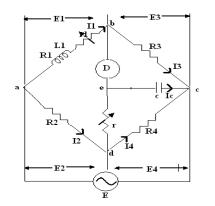
Objective: To determine unknown	inductance by using Anderson's	bridge

Theory: In this bridge, the self inductance is measured in terms of a standard capacitor. This method is applicable for precise measurement of self-inductance over a very wide range of values. Figure below show the connections and the phasor diagram of the bridge for balanced conditions.

Let L1 = self inductance to be measured, R1 = resistance of self-inductor, r,R2,R3,R4 = known non-inductive resistance r1 = resistance connected in series with self-inductor,

At, balance, I1 = I3 and I2 = IC + I4.

Now, $I1R3 = IC/j\omega C$ therefore, $IC = I1j\omega CR3$.


Writing the other balance equations.

 $I1(r1+R1+j\omega L1) = I2R2 + ICr$ and $IC(r+1/j\omega C) = (I2-IC) R4$


By substituting IC value and equating real and imaginary parts

R1 = R2R3/R4 - r1

 $L1 = C R3/R4 \{ r(R4+R2)+R2R4 \}$ Circuit Diagram

Phasor Diagram:

Procedure:

- 1. Connect the circuit as shown in the figure.
- 2. Connect the unknown inductance in L1.
- 3. Select any value of r.
- 4. Connect the multimeter between ground and output of imbalance amplifier.
- 5. Vary r1 and r, from minimum position, in clockwise direction.
- 6. Calculate the inductance L1 by substituting known values.

Observation Table:

S. No.	Actual value of L in mH	R in ohms	Practical value of L in mH

Results: The unknown inductance is determined using the Anderson's bridge.