Experiment No. 1

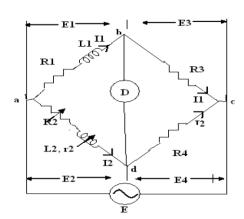
Objective: To determine unknown inductance of a given coil by Maxwell's bridge method.

Apparatus Used:

S. No.	Name of the apparatus	Quantity
1	Lab trainer kit	1
2	Multimeter	1
3	Unknown inductor	1

Theory: This bridge circuit measures an inductance by comparison with a variable standard self inductance.

The connections and the phasor diagrams for balance conditions are shown below.


Let, L1 = unknown inductance of resistance R1,

L2 = variable inductance of fixed resistance r2,

R2 = variable resistance connected in series with inductor L2,

R3, R4 = known non-inductive resistances.

Circuit Diagram:

At balance, L1 = R3L2/R4, R1 = R3(R2+r2)/R4.

Procedure:

- 1. Connect the circuit as shown in the figure.
- 2. Connect the unknown inductance in L1.
- 3. Connect the multimeter between ground and output of imbalance amplifier.
- 4. Vary R2, from minimum position, in clockwise direction.
- 5. If the selection of R2 is correct the balance point can be obtained at minimum position.
- 6. Vary R2 for fine balance adjustment.

Observation Table:

S. No.	R2	R3	C1	L1=R3L2/	
				R4	of L1
1					
2					
3					

Result: Actual and practical values of Inductances are found to be nearly equal.