
Output Characteristic

Procedure:

Input Characteristics:

1. Connect the circuit as per the circuit diagram.

2. Set $V_{CE} = 5V$, vary, V_{BE} insteps of 0.1V & note down the corresponding I_B and repeat the above procedure for 10V & so on.

3. Plot the graph: V_{CB} vs I_B for a constant V_{CE} .

Output Characteristics:

- 1. Connect the circuit as per the circuit diagram.
- 2. Set I_B = 20µA, vary V_{CE} insteps of 1V & note down the corresponding I_E . Repeat the above procedure for 40µA,80µA & so on.
- 3. Plot the graph: $V_{CE} vs \; I_C$ for a constant of $I_B.$.

EXPERIMENT-9

Objective: To verify V-I characteristics of JFET.

Apparatus required

Power supply Lab trainer kit Jumper wires Oscilloscope Waveform generator Multimeter

Theory

A JFET has three terminals as:

1) Source (S): The terminal through which the majority charge carriers enter the channel. Conventionally, the current entering at S is designated by I_S .

2) Drain (D): The terminal through which the majority charge carriers leave the channel. Conventionally, current entering the channel at D is designated by I_D . Drain-to-source voltage is V_{DS} .

3) Gate (G): the terminal that modulates the channel conductivity.

The JFET is a unipolar voltage controlled device. The drain current is controlled by the voltage applied at the gate. In the circuit shown self bias maintains drain current and mutual conductance g_m relatively constant. Constant g_m results a constant voltage gain. The reverse

biased junction provides high input impedance.

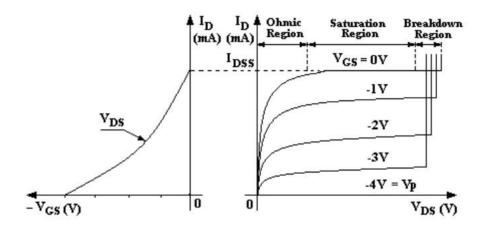
JFET Parameters

1. Drain Resistance (\mathbf{r}_d): It is given by the relation of small change in drain to source voltage (\mathbf{V}_{DS}) to the corresponding change in Drain Current (\mathbf{I}_D) for a constant gate to source voltage (\mathbf{V}_{GS}), when the JFET is operating in pinch-off region.

 $r_d = \Delta V_{DS} / \Delta I_D$ at a constant V_{GS} (from drain characteristics)

2. Trans Conductance (g_m) : Ratio of small change in drain current (I_D) to the corresponding change in gate to source voltage (V_{GS}) for a constant V_{DS} .

 $g_m = \Delta I_D / \Delta V_{GS}$ at constant V_{DS} (from transfer characteristics).


The value of $\mathbf{g}_{\mathbf{m}}$ is expressed in mho's or Siemens (s).

3. Amplification factor (μ): It is given by the ratio of small change in drain to source voltage (V_{DS}) to the corresponding change in gate to source voltage (V_{GS}) for a constant drain current (I_D).

$$\mu = (\Delta V_{DS} / \Delta I_D) \times (\Delta I_D / \Delta V_{GS}) = \Delta V_{DS} / \Delta V_{GS}$$

ie. $\mu = r_d \times g_m$

FET Transfer Characteristics

FET Drain Characteristics

Procedure:

Drain Characteristics:

- 1. Connect the circuit as shown in the figure.
- 2. Keep $V_{GS} = 0V$ by varying V_{GG} .
- 3. Varying V_{DD} gradually in steps of 1V up to 10V note down drain current I_D and drain to source voltage (V_{DS}).
- 4. Repeat above procedure for $V_{GS} = -0.4$, -0.8, -1.2 and -1.6 V

Transfer Characteristics:

- 1. Connect the circuit as shown in the figure.
- 2. Set voltage $V_{DS} = 4V/8V$
- 3. Varying V_{DS} in steps of 0.5V until the current I_D reduces to minimum value.
- 4. Varying V_{GG} gradually, note down both drain current I_D and gate-source voltage (V_{GS}).
- 5. Repeat above procedure (step 3) for $V_{DS} = 4V/8V$