
Instruction manual 

 

Experiment 1 

Objective:   To design a switch (NOT gate) using a transistor. 

Apparatus Required: 

1- Electronic circuit trainer   

2- Dual channel Oscilloscope  

3- Electronic components  

Theory:  

Definition: A logic gates is an electronic circuit which make decisions. It has one output and one or more 

inputs.   

  

Formula and circuit diagram: 

 NOT-Gate  

 Its output is NOT the same as its input. It is also called inverter because it inverts the input. It has one input 

and one output as shown in figure below.  

  
 

 

 

 

OR-gate  

The output of this circuit is logic "1" when either one input is logic "1" as shown in figure below.  
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           Experiment 3 

Objective: To design a combinational logic system for specified truth table using NAND and NOR Gates. 

Apparatus Required: Logic gate kit and wires etc. 

Theory:  

NAND GATE  

NAND gate is universal gate. It can perform all the basic logic function. NAND means  

NOT AND that is, AND output is NOTed.so NAND gate is combination of an AND gate and a NOT gate. 

The output is logic 0 level, only when each of its inputs assumes a logic 1 level. For any other combination of 

inputs, the output is logic 1 level. NAND gate is equivalent to a  

bubbled OR gate.  

The logic symbol & truth table of two input NAND gate are shown in figure 1.g & 1.h respectively.   

With input variables A & B the Boolean expression for output can be 

written as;  

  

Logic symbol:                                 Truth table:  

 

 

 

 

                         
Fig. 1                                              Fig. 2 

  

NOR GATE  

NOR gate is universal gate. It can perform all the basic logic function. NOR means NOT OR that is, 

OR output is NOTed.so NOR gate is combination of an OR gate and a NOT gate. The output is logic 1 level, 

only when each of its inputs assumes a logic 0 level. For any other combination of inputs, the output is logic 

0 level. NOR gate is equivalent to a bubbled AND gate. The logic symbol & truth table of two inputs NOR 

gate are shown in figure 1.i& 1.j respectively. With input variables A & B the Boolean expression for output 

can be written as;  

Input  Output  

A  B  X  

0  0  1  

0  1  1  

1  0  1  

1  1  0  



  

            Logic symbol:                                                               Truth 

table:  

  

  

 

 

             
 Fig. 3                                            Fig. 4 

   

 

(1)  AB + AB 

 Logical expression circuit using NAND and NOR Gate is shown in fig. (5) 

 

 

 

 

 

  

 

 

Input  Output  

A  B  X  

0  0  1  

0  1  0  

1  0  0  

1  1  0  



 

 

Fig. (5) Logical expression circuit using NAND and NOR Gate. 

                                               

 



 

 

1). when provide both the input as low (or ‘o’) Voltage we get low (or 'o') output.  

2). when we provide input. A as low (or ‘o’) and input we B as high (or '1') then we gate high output. 

3). when we provide input A as high and input B as low (or 'o') then we get high or ‘1’ output. 

4). when we provide input A and B both as low (or ‘o’) then we get low or o' output. 

 

 

(2) (A + B) (AB) Logical expression circuit using NAND and NOR Gate is shown in fig. (6) 

 

 

 

 

 

 



 

                                 

  Fig (6) Logical expression circuit using NAND and NOR Gate. 



 

1). When we provide both input A+B as low (or ‘o’) we get output as low or ‘o'. 

2). When we provide input A as low and B as high ‘1’ we get output as low. 

3). When we provide imput A as high and B law as low (or 'o') we get output as low (or 'o'). 

4). When we provide both input A+B as high (or '1') we get output as low (or ‘o’). 

Result: We designed some combinational circuit using NAND and NOR gate and verified it’s. 

Precautions: 

 1. Make the connection properly. 

2. Switch off when changing the input. 

3. Take all reading carefuly. 
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Experiment- 04 

Objective: Introduction to Digital Laboratory Equipments & IC’s 

Theory: 

 

The Breadboard 

 

The breadboard consists of two terminal strips and two bus strips (often broken in the center). 

Each bus strip has two rows of contacts. Each of the two rows of contacts are a node. That is, 

each contact along a row on a bus strip is connected together (inside the breadboard). Bus strips 

are used primarily for power supply connections, but are also used for any node requiring a large 

number of connections. Each terminal strip has 60 rows and 5 columns of contacts on each side 

of the center gap. Each row of 5 contacts is a node. 

You will build your circuits on the terminal strips by inserting the leads of circuit components into 

the contact receptacles and making connections with 22-26 gauge wire. There are wire 

cutter/strippers and a spool of wire in the lab. It is a good practice to wire+5Vand 0Vpower 

supply connections to separate bus strips. 
 

Fig1.The breadboard. The lines indicate connected holes. 

 

The 5V supply MUST NOT BE EXCEEDED since this will damage the ICs(Integrated circuits) 

used during the experiments. Incorrect connection of power to the ICs could result in them 

exploding or becoming very hot-with the possible 



serious injury occurring to the people working on the experiment! Ensure that the power 

supply polarity and all components and connections are correct before switching on power. 

 

Building the Circuit : 

Throughout these experiments we will use TTL chips to build circuits. The steps for wiring a 

circuit should be completed in the order described below: 

1 Turn the power ( Trainer Kit )off before you build anything! 

2 Make sure the power is off before you build anything! 

3 Connect the +5 V and ground (GND) leads of the power supply to the power and 

ground bus strips on your breadboard. 

4 Plug the chips you will be using into the breadboard. Point all the chips in the same 

direction with pin 1 at the upper-left corner. (Pin 1 is often identified by a dot or a notch next 

to it on the chip package) 

5 Connect+5VandGNDpinsofeachchiptothepowerandgroundbusstripsonthebreadboard. 

6 Select a connection on your schematic and place a piece of hook-up wire between 

corresponding pins of the chips on your breadboard. It is better to make the short connections 

before the longer ones. Mark each connection on your schematic as you go, so as not to try to 

make the same connection again at a later stage. 

7 Get one of your group members to check the connections, before you turn the power 

on. 

8 If an error is made and is not spotted before you turn the power on. Turn  the power 

off immediately before you begin to rewire the circuit. 

9 At the end of the laboratory session, collect you hook-up wires, chips and all 

equipment and return them to the demonstrator. 

10.Tidy the area that you were working in and leave it in the same condition as it was 

before you started. 

 

Common Causes of Problems: 

1 Not connecting the ground and/or power pins for all chips. 

2 Not turning on the power supply before checking the operation of the circuit. 

3 Leaving out wires. 

4 Plugging wires into the wrong holes. 

5 Driving a single gate input with the outputs of two or more gates 

6 Modifying the circuit with the power on. 

 

In all experiments, you will be expected to obtain all instruments , leads, components at the start 

of the experiment and return them to their proper place.



After you have finished the experiment. Please inform the demonstrator or technician. if you locate 

faulty equipment If you damage a chip, inform a demonstrator, don't put It back in the box of chips 

for somebody else to use. 

 

Example Implementation of a Logic Circuit : 

 

Build a circuit to implement the Boolean function F = /(/A./B), please note that the notation /A 

refers to . You should use that notation during the write-up of your laboratory experiments. 

 

Quad2 Input7400Hex7404Inverter 

 

Fig2.The complete designed and connected circuit 
 
Sometimes the chip manufacturer may denote the first pin by a small indented circle above the 

first pin of the chip. Place your chips in the same direction, to save confusion at a later stage . 

Remember that you must connect power to the chips to 

 

 

 



 

 

0  

  

 

Get them to work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 7400(NAND) 
 

7402(NOR) 
 



 

 

1  
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Experiment- 05 

 

Objective: To familiarise and verify the following Boolean algebra theorems and to simplify and  

realize the expression. 

  

Boolean algebra: Variable, complement, and literal are terms used in Boolean algebra. A variable 

is a symbol used to represent a logical quantity. Any single variable can have a 1 or a 0 value. 

The complement is the inverse of a variable and is indicated by a bar over variable (overbar). For 

example, the complement of the variable A is A. If A = 1, then A = 0. If A = 0, then A = 1. The 

complement of the variable A is read as "not A" or "A bar." Sometimes a prime symbol rather 

than an overbar is used to denote the complement of a variable; for example, B' indicates the 

complement of B. A literal is a variable or the complement of a variable. 

Boolean Addition: Recall from part 3 that Boolean addition is equivalent to the OR operation. In 

Boolean algebra, a sum term is a sum of literals. In logic circuits, a sum term is produced by an 

OR operation with no AND operations involved. Some examples of sum terms are A + B, A + B, 

A + B + C, and A + B + C + D. A sum term is equal to 1 when one or more of the literals in the 

term are 1. A sum term is equal to 0 only if each of the literals is 0. Example Determine the 

values of A, B, C, and D that make the sum term A + B + C + D equal to 0. 

Boolean Multiplication: Also recall from part 3 that Boolean multiplication is equivalent to the 

AND operation. In Boolean algebra, a product term is the product of literals. In 



DSD UNIT 2 NOTES 

logic circuits, a product term is produced by an AND operation with no OR 

operations involved. Some examples of product terms are AB, AB, ABC, 

and ABCD. 
 
A product term is equal to 1 only if each of the literals in the term is 1. A 

product term is equal to 0 when one or more of the literals are 0. 
 
Example 
 

Determine the values of A, B, C, and D that make the product term ABCD 

equal to 1. 

 

LAWS AND RULES OF BOOLEAN ALGEBRA 

■ Laws of Boolean Algebra 
 
The basic laws of Boolean algebra-the commutative laws for addition and 

multiplication, the associative laws for addition and multiplication, and the 

distributive law-are the same as in ordinary algebra. 

Commutative Laws 
 

►The commutative law of addition for two variables is written as 

A+B = B+A 
 
This law states that the order in which the variables are ORed makes no 

difference. Remember, in Boolean algebra as applied to logic circuits, 

addition and the OR operation are the same. Fig.(4-1) illustrates the 

commutative law as applied to the OR gate and shows that it doesn't matter 

to which input each variable is applied. (The symbol ≡ means "equivalent 

to."). 

 

 

 

 

 

Fig.(4-1) Application of commutative law of addition. 
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►The commutative law of multiplication for two variables 

is A.B = B.A 
 
This law states that the order in which the variables are ANDed makes no 

difference. Fig.(4-2), il1ustrates this law as applied to the AND gate. 

 
 
 
 
 
 

Fig.(4-2) Application of commutative law of multiplication. 
 

Associative Laws : 
 

►The associative law of addition is written as follows for three variables: 

A + (B + C) = (A + B) + C 
 
This law states that when ORing more than two variables, the result is the 

same regardless of the grouping of the variables. Fig.(4-3), illustrates this 

law as applied to 2-input OR gates. 

 
 
 
 
 
 
 
 
 

Fig.(4-3) Application of associative law of addition. 
 

►The associative law of multiplication is written as follows for three 

variables: 
 

A(BC) = (AB)C 

  
This law states that it makes no difference in what order the variables are 

grouped when ANDing more than two variables. Fig.(4-4) illustrates this law 

as applied to 2-input AND gates. 
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Fig.(4-4) Application of associative law of multiplication. 
 
 

Distributive Law: 
 

►The distributive law is written for three variables as follows: 

A(B + C) = AB + AC 
 
This law states that ORing two or more variables and then ANDing the result 

with a single variable is equivalent to ANDing the single variable with each 

of the two or more variables and then ORing the products. The distributive 

law also expresses the process of factoring in which the common variable A 

is factored out of the product terms, for example, 
 

AB + AC = A(B + C). 
 

Fig.(4-5) illustrates the distributive law in terms of gate 

implementation. 

 
 
 
 
 
 
 
 
 

 

Fig.(4-5) Application of distributive law. 
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■ Rules of Boolean Algebra 
 

Table 4-1 lists 12 basic rules that are useful in manipulating and simplifying 

Boolean expressions. Rules 1 through 9 will be viewed in terms of their 

application to logic gates. Rules 10 through 12 will be derived in terms of 

the simpler rules and the laws previously discussed. 

 
 

Table 4-1 Basic rules of Boolean algebra. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Rule 1. A + 0 = A 
 

A variable ORed with 0 is always equal to the variable. If the input variable 

A is 1, the output variable X is 1, which is equal to A. If A is 0, the output is 

0, which is also equal to A. This rule is illustrated in Fig.(4-6), where the 

lower input is fixed at 0. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig.(4-6) 
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Rule 2. A + 1 = 1 
 

A variable ORed with 1 is always equal to 1. A 1 on an input to an OR gate 

produces a 1 on the output, regardless of the value of the variable on the 

other input. This rule is illustrated in Fig.(4-7), where the lower input is 

fixed at 1. 

 
 
 
 
 
 
 
 

Fig.(4-7) 
 

Rule 3. A . 0 = 0 
 

A variable ANDed with 0 is always equal to 0. Any time one input to an 

AND gate is 0, the output is 0, regardless of the value of the variable on the 

other input. This rule is illustrated in Fig.(4-8), where the lower input is 

fixed at 0. 

 
 
 
 
 
 

 

Fig.(4-8) 
 
 
 

Rule 4. A . 1 = A 
 

A variable ANDed with 1 is always equal to the variable. If A is 0 the output 

of the AND gate is 0. If A is 1, the output of the AND gate is 1 because both 

inputs are now 1s. This rule is shown in Fig.(4-9), where the lower input is 

fixed at 1. 

 
 
 
 
 
 
 
 

Fig.(4-9) 
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Rule 5. A + A = A 
 

A variable ORed with itself is always equal to the variable. If A is 0, then 0 

+ 0 = 0; and if A is 1, then 1 + 1 = 1. This is shown in Fig.(4-10), where both 

inputs are the same variable. 

 
 
 
 
 
 
 
 
 
 

Fig.(4-10) 
 
 
 

Rule 6. A + A = 1 
 

A variable ORed with its complement is always equal to 1. If A is 0, then 0 + 

0 = 0 + 1 = 1. If A is l, then 1 + 1 = 1+ 0 = 1. See Fig.(4-11), where one 

input is the complement of the other. 

 
 
 
 
 
 
 
 
 

Fig.(4-11) 
 
 
 

Rule 7. A . A = A 
 

A variable ANDed with itself is always equal to the variable. If A = 0, 

then 0.0 = 0; and if A = 1. then 1.1 = 1. Fig.(4-12) illustrates this rule. 

 
 
 
 
 
 
 
 

 

Fig.(4-12) 
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Rule 8. A . A = 0 
 

A variable ANDed with its complement is always equal to 0. Either A or A 

will always be 0: and when a 0 is applied to the input of an AND gate. the 

output will be 0 also. Fig.(4-13) illustrates this rule. 

 
 
 
 
 
 
 
 
 
 

Fig.(4-13) 
 
 
 

Rule 9 A = A 
 

The double complement of a variable is always equal to the variable. If you 

start with the variable A and complement (invert) it once, you get A. If you 

then take A and complement (invert) it, you get A, which is the original 

variable. This rule is shown in Fig.(4-14) using inverters. 

 
 
 
 
 

 

Fig.(4-14) 
 
 
 

Rule 10. A + AB = A 
 

This rule can be proved by applying the distributive law, rule 2, and rule 4 

as follows: 
 

A + AB = A( 1 + B) Factoring (distributive law) 
 

= A . l Rule 2: (1 + B) = 1 
 

= A Rule 4: A . 1 = A 
 
 
 

The proof is shown in Table 4-2, which shows the truth table and the 

resulting logic circuit simplification. 
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Table 4-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rule 11.    A + AB = A + B 
 

This rule can be proved as follows: 
 

A + AB = (A + AB) + AB Rule 10: A = A + AB 
 

= (AA + AB) + AB Rule 7: A = AA 
 

=AA +AB +AA +AB Rule 8: adding AA = 0 
 

= (A + A)(A + B) Factoring 
 

= 1. (A + B) Rule 6: A + A = 1 
 

=A + B Rule 4: drop the 1 
 

The proof is shown in Table 4-3, which shows the truth table and the 

resulting logic circuit simplification. 

 

 

Table 4-3 
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Rule 12.    (A + B)(A + C) = A + BC 
 

This rule can be proved as follows: 
 

(A + B)(A + C) = AA + AC + AB + BC   Distributive law 
 

= A + AC + AB + BC Rule 7: AA = A 
 

= A( 1 + C) + AB + BC   Rule 2: 1 + C = 1 
 

= A. 1 + AB + BC Factoring (distributive law) 
 

= A(1 + B) + BC Rule 2: 1 + B = 1 
 

= A. 1 + BC Rule 4: A . 1 = A 
 

= A + BC 
 
 
 

The proof is shown in Table 4-4, which shows the truth table and the 

resulting logic circuit 
 
simplification. 
 
 
 

Table 4-4 
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Experiment – 06 

Objective: To minimize a given logic circuit. 

Theory: 

Logic gates in the standard circuits with transistor-minimum gate equivalents (by taking 

advantage of NAND/NOR logic) results in the minimized POS and SOP circuits shown in the 

green boxes. As engineers, one of our primary goals is to implement circuits efficiently. The 

most efficient circuit can use the fewest number of transistors, or it can operate at the highest 

speeds, or it can use the least amount of power. Often, these three measures of efficiency cannot 

all be optimized at the same time, and designers must trade-off circuit size for speed of 

operation, or speed for power, or power for size, etc. Here, we will define the most efficient 

circuit as the one that uses the minimum number of transistors, and leave speed and power 

considerations for later consideration. Because we have chosen the minimum-transistor measure 

of efficiency, we will look for “minimum” circuits. The best method of determining which of 

several circuits is the minimum is to count the needed transistors. For now, we will use a simpler 

method – the minimal circuit will be defined as the one that uses the fewest number of logic 

gates (or, if two forms use the same number of gates, then the one that uses the fewest number of 

total inputs to all gates will be considered the simplest). The following examples show circuits 

with the gate/input number shown below. Inverters are not included in the gate or input count, 

because often, they are absorbed into the logic gates themselves. 

 

A minimal logic equation for a given logic system can be obtained by eliminating all non-

essential or redundant inputs. Any input that can be removed from the equation without changing 



the input/output relationship is redundant. To find minimal equations, all redundant inputs must 

be identified and removed. In the truth table above, note the SOP terms generated by rows 1 and 

3. The A input is „0‟ in both rows, and the C input is „1‟ in both rows, but the B input is „0‟ in 

one row and „1‟ in the other. Thus, for these two rows, the output is a „1‟ whether B is a „0‟ or 

„1‟ and B is therefore redundant.  

The goal in “minimizing” logic systems is to find the simplest form by identifying and removing 

all redundant inputs. For a logic function of N inputs, there are 22 N logic functions, and for each 

of these functions, there exists a minimum SOP form and a minimum POS form. The SOP form 

may be more minimal than the POS form, or the POS form may be more minimal, or they may 

be equivalent (i.e., they may both require the same number of logic gates and inputs). In general, 

it is difficult to identify the minimum form by simply staring at a truth table. Several methods 

have evolved to assist with the minimization process, including the application of Boolean 

algebra, the use of logic graphs, and the use of searching algorithms. Although any of these 

methods can be employed using pen and paper, it is far easier (and more productive) to 

implement searching algorithms on a computer.  

Boolean algebra:  

Boolean algebra is perhaps the oldest method used to minimize logic equations. It provides a 

formal algebraic system that can be used to manipulate logic equations in an attempt to find more 

minimal equations. It is a proper algebraic system, with three set elements {„0‟, „1‟, and „A‟} 

(where „A‟ is any variable that can assume the values „0‟ or „1‟), two binary operations (and or 

intersection, or or union), and one unary operation (inversion or complementation). Operations 

between sets are closed under the three operations. The basic laws governing and, or, and 

inversion operations are easily derived from the logic truth tables for those operations. The 

associative, commutative, and distributive laws can be directly demonstrated using truth tables. 

Only the distributive law truth table is shown in the truth table below, with colors used to 

highlight the columns that show the equivalency of both sides of the distributive law equations. 

Truth tables to demonstrate the simpler associative and commutative laws are not shown, but 

they can be easily derived. 

 



 

 

 

 

 

 

AND Operation OR Operation INV Operation 

Truth table Laws Truth table Laws Truth table Laws 

0 · 0 = 0 A · 0 = 0 0 + 0 = 0 A + 0 = A 0' = 1 A'' = A 

1 · 0 = 0 A · 1 = A 1 + 0 = 1 A + 1 = 1 1' = 0  

0 · 1 = 0 A · A = A 0 + 1 = 1 A + A = A   

    1 · 1 = 1 A · A' = 0 1 + 1 = 1 A + A' = 1   

Associative Laws Commutative Laws Distributive Laws 

(A·B)·C = A·(B·C) = A·B·C 

(A+B)+C = A+(B+C) = 

A+B+C 

A·B·C = B·A·C = ... 

A+B+C = B+C+A = ... 

A·(B+C) = (A·B) + (A·C) 

A+(B·C) = (A+B) · (A+C) 

Truth table to verify distributive laws 

A B C A+B B+C A+C A.B B.C A.C A.(B+C) (A.B)+(A.C) A+(B.C) (A+B).(A+C) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 1 1 0 0 0 0 0 0 0 

0 1 0 1 1 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 0 1 0 0 0 1 1 

1 0 0 1 0 1 0 0 0 0 0 1 1 

1 0 1 1 1 1 0 0 1 1 1 1 1 

1 1 0 1 1 1 1 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 



AND‟ing operations take precedence over OR‟ing operations. Parenthesis can be used to eliminate any 

possible confusion. Thus, the following two sets of equations show equivalent logic equations. 

 A·B+C = (A·B) + C                                A+B·C = A + (B·C)  

DeMorgan‟s Law provides a formal algebraic statement for the property observed in defining the 

conjugate gate symbols: the same logic circuit can be interpreted as implementing either an AND or an 

OR functions, depending how the input and output voltage levels are interpreted. DeMorgan‟s law, 

which is applicable to logic systems with any number of inputs, states 

(A·B)‟ = A‟ + B‟ (nand form) and   

(A+B)‟ = A‟·B‟ (nor form).  

 

 

 

 

 

The laws of Boolean algebra generally hold for XOR functions as well, except that DeMorgan‟s 

law takes a different form. Recall from the previous module that the XOR function output is 

asserted whenever an odd number of inputs are asserted, and that the XNOR function output is 

asserted whenever an even number of inputs are asserted. Thus, inverting a single input to an 

XOR function, or inverting its output, yields the XNOR function. Likewise, inverting a single 

input to an XNOR function, or inverting its output, yields the XOR function. Inverting an input 

together with the output, or inverting two inputs, changes an XOR function to XNOR, and vice-

versa. These observations lead to a version of DeMorgan‟s Laws that hold for XOR functions of 

any number of inputs: 

 



Note that a single input inversion can be moved to any other signal in a multi-input XOR circuit 

without changing the logical result. Note also that any signal inversion can be replaced with a 

non-inverted signal and an XNOR function. These properties will be useful in later work.  

The circuits below also serve illustrate the laws of Boolean Algebra. 

The following examples illustrate the use of Boolean Algebra to find simpler logic equations. 



 

 

The last two examples on the left (with the blue boxes) shows relationships that are sometimes 

called the “absorptive” laws, and the example on the right (with the green box) is often called the 

“consensus” law. The so-called absorptive laws are easily demonstrated with other laws, so it is 



not necessary or even convenient to use these relationships as laws – particularly because 

different forms of equations can make it difficult to identify when the law might apply. The 

consensus law is also easily derived, if the “trick” of AND‟ing a „1‟ into the equation, and then 

expanding that AND into an OR relationship is used (this trick is perfectly acceptable, if not 

entirely obvious). 
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Experiment – 07 

Objective: To study the half adder, full adder, half Subtractor and full Subtractor. 

Apparatus Required – DIT board and its power supply. 

Theory:  

Half Adder 

A half adder has two inputs for the two bits to be added and two Outputs one from the sum „S‟ 

and other from the carry „C‟ into the higher adder positive. Above circuit is called as a carry 

signal from the addition of the less significant bits sum from the X-OR Gate the carry out from 

the AND gate. 

Logic Diagram of half adder: 

 

 

 



 

 

Truth Table: 

A  B  CARRY  SUM  

0  0  0  0  

0  1  0  1  

1  0  0  1  

1  

  

1  

  

1  

  

0  

  

K-Map for SUM:                                                    K-Map for CARRY:  

 

               SUM = A’B + AB’                                                   CARRY = AB 

Full Adder: 

A full adder is a combinational circuit that forms the arithmetic sum of input; it consists of three 

inputs and two outputs. A full adder is useful to add three bits at a time but a half adder can‟t do 

so. In full adder sum output will be taken from X-OR Gate, carry output will be taken from OR 

Gate. 

Logic Diagram of half adder: 

1   

1   

1   



 

K-Map for SUM 

 

 

 

                                              

                                               

                     SUM = A’B’C + A’BC’ + ABC’ + ABC 

Truth Table: 

 

 

 

 

 

 

 

A  B  C  CARRY  SUM  

0  0  0  0  0  

0  0  1  0  1  

0  1  0  0  1  

0  1  1  1  0  

1  0  0  0  1  

1  0  1  1  0  

1  1  0  1  0  

1  

  

1  

  

1  

  

1  

  

1  

  

  
1   1 

    

1     1   
 



K-Map for CARRY  

 

                      CARRY = AB + BC + AC 

Half Subtractor: 

The half subtractor is constructed using X-OR and AND Gate. The half substractor has two input 

and two outputs. The outputs are difference and borrow. The difference can be applied using X-

OR Gate, borrow output can be implemented using an AND Gate and an inverter. 

Logic Diagram of half subtractor: 

 

Truth Table: 

 

 

 

 

A  B   BORROW  DIFFERENCE  

0   0    0  0  

0   1    1  1  

1   0    0  1  

1  

  

 1    

    

0  

  

0  

  



 

K-Map for DIFFERENCE                      K-Map for BORROW 

                      

DIFFERENCE = A’B + AB’                                      BORROW = A’B  

Full Subtractor: 

The full subtractor is a combination of X-OR, AND, OR, NOT Gates. In a full subtractor the 

logic circuit should have three inputs and two outputs. The two half subtractor put together gives 

a full subtractor. The expression AB assembles the borrow output of the half subtractor and the 

second term is the inverted difference output of first XOR. 

Logic Diagram of Full Subtractor: 

 

1   

1   

1   



 

 

          FULL SUBTRACTOR USING TWO HALF SUBTRACTOR  

 

 

 

 

 

 

 

Truth Table:  

 

 

 

 

 

 

 

 

 

 

 

A B C BORROW DIFFERENCE 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 



K-Map for Difference                                                  K-Map for Borrow 

 

         Difference = A’B’C + A’BC’ + AB’C’ + ABC               Borrow = A’B + BC + A’C   

 

PROCEDURE: 

B) HALF ADDER: 

1. Connect A & B I/P of Half Adder to switches from input switches section. 

2. Connect SUM O/P of Half Adder to L1 & CARRY O/P of Half Adder to L2 in O/p 

SECTION. 

3. Switch on the power supply of the Kit. 

4. Provide proper inputs to half adder using switches as per truth table of half adder  

shown above.  

5. Observe the O/P of Half Adder on LEDs. 

6. Verify the functionality of half Adder as per truth table & Note it down. 

C) FULL ADDER: 

1. Connect A, B and C I/P of Full adder to switches from input switches section. Connect 

SUM & CARRY O/P of Full Adder to leds from O/P LED section. 

2. Switch ON the power supply of the Kit. 

3. Provide proper inputs to Full adder using switches as per truth table of Full adder shown 

above. 

4. Observe the O/P of Full Adder on LEDs. 

5. Verify the functionality of Full Adder as per truth table & Note it down. 

1   1 

1   1   
    



 

D) HALF SUBTRACTOR: 

1. Connect A & B I/P of Half Subtractor to switches from input switches section. Connect 

DIF & BOR O/P of Half subtractor to leds in O/P LED section. 

2. Switch on the power supply of the Kit. 

3.  Provide proper inputs to half subtractor using switches as per truth table of half adder 

shown above. 

4.  Observe the O/P of Half subtractor on LEDs. 

5. Verify the functionality of half subtractor as per truth table & Note it down. 

E) FULL SUBTRACTOR: 

1) Connect A, B & C I/P of Full Subtractor to switches from input switches section. 

2) Connect DIF & BOR O/P of Full Subtractor to leds from O/P SECTION. 

3) Switch ON the power supply of the Kit. 

4) Provide proper inputs to Full Subtractor using switches as per truth table of Full Subtractor 

shown above. 

5) Observe the O/P of Full Subtractor on LEDs. 

6) Verify the functionality of Full Subtractor as per truth table & Note it down. 

 

 

 

 

 

 



Instruction Manual 

Experiment -8 

Objective: To build Flip-Flop (RS, Clocked RS, D-Type and JK) circuits using NAND gates. 

Flip Flops 

A digital computer needs devices which can store information. A flip flop is a binary storage 

device. It can store binary bit either 0 or 1. It has two stable states HIGH and LOW i.e. 1 and 0. 

It has the property to remain in one state indefinitely until it is directed by an input signal to 

switch over to the other state. It is also called bistable multivibrator. 

The basic formation of flip flop is to store data. They can be used to keep a record or what value 

of variable (input, output or intermediate). Flip flop are also used to exercise control over the 

functionality of a digital circuit i.e. change the operation of a circuit depending on the state of 

one or more flip flops. These devices are mainly used in situations which require one or more of 

these three. 

Operations, storage and sequencing. 

Latch Flip Flop 

The R-S (Reset Set) flip flop is the simplest flip flop of all and easiest to understand. It is 

basically a device which has two outputs one output being the inverse or complement of the 

other and two inputs. A pulse on one of the inputs to take on a particular logical state. The 

outputs will then remain in this state until a similar pulse is applied to the other input. The two 

inputs are called the Set and Reset input (sometimes called the preset and clear inputs). 

Such flip flop can be made simply by cross coupling two inverting gates either NAND or NOR 

gate could be used Figure 1(a) shows on RS flip flop using NAND gate and Figure 1(b) shows 

the same circuit using NOR gate. 

 

 



                              (a) Latch Flip Flops NOR Gate. 

 

 

                                                   (b) RS Latch Flip Flop NAND Gate.  

To describe the circuit of Figure 1(a), assume that initially both R and S are at the logic 1 state 

and that output is at the logic 0 state. 

 Now, if Q=0 and R=1 then these are the states of inputs of gate B, therefore the outputs of gate 

B is at 1 ((making it the inverse of Q i.e. 0). The output of gate B is connected to an input of gate 

A so if S=1, both inputs of gate A are at the logic 1 state. This means that the output of gate A 

must be 0 (as was originally specified). In other words, the 0 state at Q is continuously disabling 

gate B so that any change in R has no effect. Also the 1 state at Q‟ is continuously enabling gate 

A so that any change S will be transmitted through to Q. The above conditions constitute one of 

the stable states of the device referred to as the Reset state since Q = 0. 

Now suppose that the R-S flip flop in the Reset state, the S input goes to 0. The output of gate A 

i.e. Q will go to 1 and with Q=1 and R=1, the output of gates B (Q‟) will go to 0 with Q‟ now 0 

gate A is disabled keeping Q at 1. Consequently, when S returns to the 1 state it has no effect on 

the flip flop whereas a change in R will cause a change in the output of gate B. The above 

conditions constitute the other stable state of the device, called the Set state since Q=1 Note that 

the change of the state of S from 1 to 0 has caused the flip flop to change from the Reset state to 

the Set state. 

There is another input condition which has not yet been considered. That is when both the R and 

S inputs are taken to the logic state 0. When this happens both Q and Q‟ will be forced to 1 and 



will remain so far as long as R and S are kept at 0. However when both inputs return to 1 there is 

no way of knowing whether the flip flop will latch in the Reset state or the Set state. The 

condition is said to be indeterminate because of this indeterminate state great care must be taken 

when using R-S flip flop to ensure that both inputs are not instructed simultaneously. 

Table 1: The truth table for the NAND R-S flip-flop. 

Initial Conditions 

 

Inputs (Pulsed) Final Output 

Q S R Q 

1 0 0 Indeterminate 

1 0 1 1 

1 1 0 0 

1 1 1 1 

0 0 0 Indeterminate 

0 0 1 1 

0 1 0 0 

0 1 1 0 

 

Table 2: Simplified NAND R-S Flip-Flop Truth Table. 

S R Q 

0 0 Indeterminate 

0 1 1 (Set) 

1 0 0 (Reset) 

1 1 No Change 

 

When NOR gate are used the R and S inputs are transposed compared with the NAND version. 

Also the stable state when R and S are both 0. A change of state is effected by pulsing the 

appropriate input to the 1 state. The indeterminate state is now when both R and S are 

simultaneously at logic 1. Table 3 shows this operation. 



Table 3: NOR Gate R-S Flip-Flop Truth Table. 

S R Q 

0 0 No Change 

0 1 0 (Reset) 

1 0 1 (Set) 

1 1 Indeterminate 

 

Clocked R-S Flip Flop 

The RS latch flip flop required the direct input but no clock. It is very use full to add clock to 

control precisely the time at which the flip flop changes the state of its output.  

In the clocked R-S flip flop the appropriate levels applied to their inputs are blocked till the 

receipt of a pulse from another source called clock. The flip flop changes state only when clock 

pulse is applied depending upon the inputs. The basic circuit is shown in Figure 2. This circuit is 

formed by adding two AND gates at inputs to the R-S flip flop. In addition to control inputs Set 

(S) and Reset (R), there is a clock input (C) also. 

 

                   Figure 2: Clocked R-S flip flop circuit diagram. 

 

Table 4: The truth table for the Clocked R-S flip-flop. 

Initial Conditions 

 

Inputs (Pulsed) Final Output Comment 



Q S R Q (t+1) No Change 

1 0 0 0 No Change 

1 0 1 0 Clear Q 

1 1 0 1 Set Q 

1 1 1 ??? Indeterminate 

0 0 0 1 No Change 

0 0 1 0 Clear Q 

0 1 0 1 Set Q 

0 1 1 ??? Indeterminate 

The excitation table for R-S flip flop is very simply derived as given below. 

Table 5: Excitation table for R-S Flip Flop. 

S R Q 

0 0 No Change 

0 1 0 (Reset) 

1 0 1 (Set) 

1 1 Indeterminate 

 

D Flip Flop 

A D type (Data or delay flip flop) has a single data input in addition to the clock input as shown 

in Figure 3. 

 

                                                          Figure 3: D Flip Flop 



Basically, such type of flip flop is a modification of clocked RS flip flop gates from a basic 

Latch flip flop and NOR gates modify it in to a clock RS flip flop. The D input goes directly to S 

input and its complement through NOT gate is applied to the R input.  

This kind of flip flop prevents the value of D from reaching the output until a clock pulse occurs. 

The action of circuit is s forward as follows. 

When the clock is low, both AND gates are disabled, therefore D can change values without 

affecting the value of Q. On the other hand, when the clock is high, both AND gates are enabled. 

In this case, Q is forced equal to D when the clock again goes low, Q retains or stores the last 

value of D. The truth table for such a flip flop is as given below in table 6. 

Table 6: Truth table for D Flip-Flop. 

S R Q (t+1) 

0 0 0 

0 1 1 

1 0 0 

1 1 1 

The excitation table for D flip flop is very simply derived given as under. 

Table 7: Excitation table for D Flip-Flop. 

S R 

0 0 

1 1 

 

JK Flip Flop 

One of the most useful and versatile flip flop is the JK flip flop the unique features of a JK flip 

flop are: 

1. If the J and K input are both at 1 and the clock pulse is applied, then the output will change 

state, regardless of its previous condition. 



2. If both J and K inputs are at 0 and the clock pulse is applied there will be no change in the 

output. There is no indeterminate condition; in the operation of JK flip flop i.e. it has no 

ambiguous state. The circuit diagram for a JK flip flop is shown in figure 4. 

 

                                    Figure 4: J-K Flip Flop circuit diagram. 

When J = 0 and K = 0 

These J and K inputs disable the NAND gates, therefore clock pulse have no effect on the flip 

flop. In other words, Q returns it last value. 

When J = 0 and K = 1 

The upper NAND gate is disabled the lower NAND gate is enabled if Q is 1 therefore, flip flop 

will be reset (Q = 0, =1) if not already in that state. 

When J=1 and K=0 

The lower NAND gate is disabled and the upper NAND gate is enabled if Q is at 1, As a result 

we will be able to set the flip flop (Q =1,= 0) if not already set 

When J=1 and K=1 

If Q = 0 the lower NAND gate is disabled the upper NAND gate is enabled. This will set the flip 

flop and hence Q will be 1. On the other hand if Q =1 the lower NAND gate is enabled and flip 



flop will be reset and hence Q will be 0. In other words, when J and K are both high, the clock 

pulses cause the JK flip flop to toggle. Truth table for JK flip flop is shown in table 8. 

Table 8: The truth table for the J-K flip flop 

Initial 

Conditions 

 

Inputs (Pulsed) Final Output 

Q S R Q (t+1) 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 0 

The excitation table for D flip flop is very simply derived given as under. 

Table 9: Excitation table for J-K Flip-Flop. 

S R Q  

0 0 No Change 

0 1 0 

1 0 1 

1 1 Toggle 

 

T Flip - Flop 

A method of avoiding the indeterminate state found in the working of RS flip flop is to provide 

only one input (the T input) such, flip flop acts as a toggle switch. Toggle means to change in the 

previous stage i.e. switch to opposite state. It can be constructed from clocked RS flip flop be 

incorporating feedback from output to input as shown in Figure 5. 



 

                                         Figure: 5 T flip- flop circuit diagram. 

Such a flip flop is also called toggle flip flop. In such a flip flop a train of extremely narrow 

triggers drives the T input each time one of these triggers, the output of the flip flop changes 

stage. For instance Q equals 0 just before the trigger. Then the upper AND gate is enable and the 

lower AND gate is disabled. When the trigger arrives, it results in a high S input. 

This sets the Q output to 1. When the next trigger appears at the point T, the lower AND gate is 

enabled and the trigger passes through to the R input this forces the flip flop to reset. 

Since each incoming trigger is alternately changed into the set and reset inputs the flip flop 

toggles. It takes two triggers to produce one cycle of the output waveform. This means the output 

has half the frequency of the input stated another way, a T flip flop divides the input frequency 

by two. Thus such a circuit is also called a divide by two circuits. 

A disadvantage of the toggle flip flop is that the state of the flip flop after a trigger pulse has 

been applied is only known if the previous state is known. The truth table for a T flip flop is as 

given table 7. 

Table 7: The truth table for a T flip flop 

Qn T Qn+1 

0 0 0 

0 1 1 

1 0 1 

1 1 0 



 

Instruction Manual 

Experiment- 09 

Objective: To set up and test a 7-segment static display system to display numbers 0 to 9. 

Learning Objective:  

To learn about various applications of decoder 

To learn and understand the working of IC 7447 

To learn about types of seven-segment display 

Apparatus Required: 

IC7447, 7-Segment display (commor anode), Patch chords, Breadboard. 

Theory: 

The Light Emitting Diode (LED) finds its place in many applications in these modern electronic 

fields. One of them is the Seven Segment Display. Seven-segment displays contains the 

arrangement of the LEDs in "Eight" (8) passion, and a Dot (.) with a common electrode, lead 

(Anode or Cathode). The purpose of arranging it in that passion is that we can make any number 

out of that by switching ON and OFF the particular LED's. Here is the block diagram of the 

Seven Segment LED arrangement. 

The Light Emitting Diode (LED) finds its place in many applications in these modern electronic 

fields. One of them is the Seven Segment Display. Seven segment displays contains the 

arrangement of the LEDs in "Eight" (8) passion, and a Dot (.) with a common electrode, lead 

(Anode or Cathode). The purpose of arranging it in that passion is that we can make any number 

out of that by switching ON and OFF the particular LED's. Here is the block diagram of the 

Seven Segment LED arrangement. 



   

Seven Segment Display 

LED's are basically of two types- 

Common Cathode (CC) - All the 8 anode legs uses only one cathode, which is common. 

Common Anode (CA)-The common leg for the entire cathode is of Anode type. 

A decoder is a combinational circuit that connects the binary information from 'n' input lines to a 

maximum of 2" unique output lines. The IC7447 is a BCD to 7-segment pattern converter. The 

IC7447 takes the Binary Coded Decimal (BCD) as the input and outputs the relevant 7 segment 

code. 

Circuit Diagram: 

 

BCD Inputs 

 

Output Logic Levels from IC 7447 to 7-segments 

Decimal 

number 

display 

D C B A a b c d e f g  

0 0 0 0 0 0 0 0 0 0 1 0 

0 0 0 1 1 0 0 1 1 1 1 1 

0 0 1 0 0 0 1 0 0 1 0 2 

0 0 1 1 0 0 0 0 1 1 0 3 

0 1 0 0 1 0 0 1 1 0 0 4 

0 1 0 1 0 1 0 0 1 0 0 5 

0 1 1 0 1 1 0 0 0 0 0 6 



0 1 1 1 0 0 0 1 1 1 1 7 

1 0 0 0 0 0 0 0 0 0 0 8 

1 0 0 1 0 0 0 1 1 0 0 9 

 

 

Procedure: 

1. Check all the components for their working. 

2. Insert the appropriate IC into the Breadboard. 

3. Make connections as shown in the circuit diagram. 

4. Verify the Truth Table and observe the outputs. 


