
DIGITAL SIGNAL PROCESSING LAB

DIGITAL SIGNAL PROCESSING LABORATORY

MASTER MANUAL

DEPARTMENT

OF

ELECTRONICS & COMMUNICATION ENGINEERING

SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY

GURU GHASIDAS VISHWAVIDYALAYA BILASPUR

(CENTRAL UNIVERSITY)

KONI, BILASPUR-495009

DIGITAL SIGNAL PROCESSING LAB

 Page 1

B. Tech. III Year V Semester

EC205PPC08 DIGITAL SIGNAL PROCESSING LAB

LIST OF EXPERIMENTS:

1. To generate the random sequences and determine the correlation.

2. To verify linear and circular convolutions.

3. To compute DFT of sequence and its spectrum analysis.

4. To implement 8-point FFT algorithm.

5. To design of FIR filters using rectangular window techniques.

6. To design of FIR filters using triangular window techniques.

7. To design of FIR filters using kaiser window.

8. To design of butterworth IIR filter.

9. To design of chebyshev IIR filter.

10. To generate the down sample (decimation) by an integer factor,

11. To generate the up sample (interpolation) by an integer factor

12. To remove the noise in 1-D and 2-D signals

DIGITAL SIGNAL PROCESSING LAB

 Page 2

1. PROGRAM TO GENERATE RANDOM SEQUENCES AND PERFORM

CORRELATION OF 2 SEQUENCES

AIM:

To generate a random sequence and perform cross correlation between two sequences.

APPARATUS:

PC with MATLAB

THEORY:

(a) Generation of Random Sequences

Matlab has two functions for generating random numbers, which can be added to signals to model

noise.

 A = rand(m,n)-generates an mxn array of random numbers from the uniform distribution on

the interval[0,1].

 r = randi(imax,n) returns an n-by-n matrix containing pseudorandom integers drawn from

the discrete uniform distribution on the interval [1,imax].

 R = randn(sz,arraytype) creates a matrix with underlying class of double, with random

values in all elements both positive and negative.

 p = randperm(n,k) returns a row vector containing k unique integers selected randomly from

1 to n numbers.

(b) Correlation of 2 sequences

Correlation:

It is a mathematical tool used to compare 2 signals.It has a significant role in signal processing.We

have 2 types of correlations.

Auto Correlation:

Autocorrelation, also known as serial correlation, is the correlation of a signal with itself at different

points in time. Informally, it is the similarity between observations as a function of the time lag

between them. It is a mathematical tool for finding repeating patterns, such as the presence of a

periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal

implied by its harmonic frequencies.

It is given by Rxx(l)= ∑ x(n)*x(n-l)

Cross Correlation:

In signal processing, cross-correlation is a measure of similarity of two series as a function of the

displacement of one relative to the other. Cross correlation between a pair of signals x(n) and y(n) is

given by,

 Rxy(l)= ∑ x(n)*y(n-l)

The index l is called lag parameter and the subscript xy indicates that x(n) is reference sequence that

remains unshifted in time and y(n) is shifted l units in time with respect to x(n).

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Signal_%28information_theory%29
https://en.wikipedia.org/wiki/Missing_fundamental
https://en.wikipedia.org/wiki/Harmonic
https://en.wikipedia.org/wiki/Signal_processing

DIGITAL SIGNAL PROCESSING LAB

 Page 3

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

(b) Generation of Random Sequences

% Generate the random sequences and determine the

correlation.

clc;

close all;

clear all;

% two input sequences

l=input('enter input sequence length')

x = randi(10,1,l);

y = randi(10,1,l);

subplot(2,2,1);

stem(x);

xlabel('n');

ylabel('x(n)');

title('input sequence');

subplot(2,2,2);

stem(y);

xlabel('n');

ylabel('y(n)');

title('input sequence');

% cross correlation of input sequence

z=xcorr(x,y);

disp('The values of z are = '); disp(z);

subplot(2,1,2);

stem(z);

xlabel('n');

ylabel('z(n)');

title('Cross correlation of input sequence');

z1=xcorr(x,x);

disp('The values of z are = '); disp(z1);

figure(2)

subplot(2,2,1);

stem(x);

xlabel('n');

ylabel('x(n)');

title('input sequence');

subplot(2,2,2);

stem(y);

xlabel('n');

ylabel('y(n)');

DIGITAL SIGNAL PROCESSING LAB

 Page 4

title('input sequence');

subplot(2,1,2);

stem(z1);

xlabel('n');

ylabel('z(n)');

title('Auto correlation of input sequence');

INPUT:

Enter the sequence length: 10.

OUTPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 5

RESULT:

Two Random sequence, and its auto correlation, cross correlation is generated in MATLAB and

figures are plotted showing all the specifications.

DIGITAL SIGNAL PROCESSING LAB

 Page 6

2. LINEAR CONVOLUTION AND CIRCULAR CONVOLUTION

(a) LINEAR CNVOLUTION

AIM:

To perform linear convolution of two sequences without using in-built function.

APPARATUS:

PC with MATLAB

THEORY:

Convolution is a formal mathematical operation, just as multiplication, addition, and integration.

Addition takes two numbers and produces a third number, while convolution takes two signals and

produces a third signal. Convolution is used in the mathematics of many fields, such as probability

and statistics. In linear systems, convolution is used to describe the relationship between three

signals of interest: the input signal, the impulse response, and the output signal.

In Linear convolution if x1(n) has L samples and x2(n) has M samples then the linear convoluted

output y(n) has a total of L+M-1 number of samples.

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

% To verify Linear convolutions.

close all;

clear all;

clc;

clearvars

x=input('Enter x: ')

DIGITAL SIGNAL PROCESSING LAB

 Page 7

% x=sin(2*pi*0.1.*(1:1:11));

h=input('Enter h: ')

% h=[1 2 3 4 5 3 1 -1];

% convolution

m=length(x);

n=length(h);

X=[x,zeros(1,n)];

H=[h,zeros(1,m)];

for i=1:n+m-1

 Y(i)=0;

 for j=1:m

 if(i-j+1>0)

 Y(i)=Y(i)+X(j)*H(i-j+1);

 else

 end

 end

end

% plot results

figure;

subplot(3,1,1); stem(x, '-b^'); xlabel('n');

ylabel('x[n]'); grid on;

title('Input signal x[n]');

subplot(3,1,2); stem(h, '-ms');

xlabel('n'); ylabel('h[n]'); grid on;

title('impulse function h[n]');

subplot(3,1,3); stem(Y, '-ro');

ylabel('Y[n]'); xlabel('----->n'); grid on;

title('Convolution of Two Signals without conv function');

INPUT:

Enter x: [10 5 18 9 14 0 4 6 15 21]

Enter h: [12 27 31 10 21 5 16 7 9 1]

OUTPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 8

RESULT:

Without using in-built function for convolution, linear convolution for two input sequences

is performed.

DIGITAL SIGNAL PROCESSING LAB

 Page 9

(b).CIRCULAR CONVOLUTION

AIM:

To perform circular convolution of two sequences without using in-built function for

circularconvolution.

APPARATUS:

PC with MATLAB

THEORY:

Given two sequences x1(n) and x2(n), then the circular convolution of these 2 sequences is given by

x3(n)= x1(n) N x2(n) which is given by the following equation,

x3(n) = 𝑁−1𝑚=0 x1(m) x2((n-m))N

It can be found by 2 methods:

1. Concentric circle method

2. Matrix Multiplication method

If x1(n) has L number of samples and x2(n) has M number of samples and L>M, then circular

convolution between the 2 sequences can be performed by taking N=max(L,M) by adding L-M

number of zero samples to the sequence x2(n)so that both the sequences are periodic with N.

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

% To verify Circular convolutions.

clc;

close all; clear all;

x=input('Enter x(n):\n');

h=input('Enter h(n):\n');

m=length(x);%length of sequence x(n)

n=length(h);%length of sequence h(n)

N=max(m,n);%length of output sequence y(n)

%For equating both sequence length

x=[x,zeros(1,N-m)];

DIGITAL SIGNAL PROCESSING LAB

 Page 10

h=[h,zeros(1,N-n)];

for n=1:N

 Y(n)=0;

 for i=1:N

 j=n-i+1;

 if(j<=0)

 j=N+j;

 end

 Y(n)=[Y(n)+x(i)*h(j)];

 end

end

n=0:N-1;%Range of all Sequences

figure('Name','Anil Kumar Soni');

subplot(311)

disp('First Sequence x(n) is:')

disp(x)

stem(n,x)

xlabel('n')

ylabel('x(n)')

title('First Sequence')

grid on;

subplot(312)

disp('Second Sequence h(n) is:')

disp(h)

stem(n,h)

xlabel('n')

ylabel('h(n)')

title('Second Sequence')

grid on;

subplot(313)

disp('Convoluted Sequence Y(n) is:')

disp(Y)

stem(n,Y)

xlabel('n')

ylabel('Y(n)')

title('Circular Convoluted Sequence')

grid on;

INPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 11

Enter x: [10 5 18 9 14 0 4 6 15 21]

Enter h: [12 27 31 10 21 5 16 7 9 1]

OUTPUT:

Circular convolution of two sequences is.

RESULT:

Without using built-in function for convolution, circular convolution of two input sequences

is performed.

DIGITAL SIGNAL PROCESSING LAB

 Page 12

3. SPECTRAL ANALYSIS USING DFT

AIM:

 To perform spectral analysis on a signal using Discrete Fourier Transform and plot the

power distribution of the signal versus frequency graph

APPARATUS:

PC with MATLAB

THEORY:

The discrete Fourier transform (DFT) maps a finite number of discrete time-domain samples to the

same number of discrete Fourier-domain samples. Being practical to compute, it is the primary

transform applied to real-world sampled data in digital signal processing. The DFT has special

relationships with the discrete-time Fourier transform and the continuous-time Fourier transform

that let it be used as a practical approximation of them through truncation and windowing of an

infinite-length signal. Different window functions make various tradeoffs in the spectral distortions

and artifacts introduced by DFT-based spectrum analysis.

The DFT transforms N samples of a discrete-time signal to the same number of discrete frequency

samples, and is defined as

The DFT is invertible by the inverse discrete Fourier transform (IDFT):

The DFT and IDFT are a self-contained, one-to-one transform pair for a length-Ndiscrete-time

signal. The DFT is notmerely an approximation to the DTFT. However, the DFT is very often used

as a practical approximation to the DTFT.

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

% To compute DFT of sequence and its Spectrum Analysis.

clc; clear all; close all;

x=input('enter input sequence') % x = [2 3 -1 4];

N = length(x);

X = zeros(N,1)

https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#IDFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DTFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DTFTequation

DIGITAL SIGNAL PROCESSING LAB

 Page 13

% code for DFT

for k = 0:N-1

 for n = 0:N-1

 X(k+1) = X(k+1) + x(n+1)*exp(-j*pi*2*n*k/N)

 end

end

% code for IDFT

xk = zeros(N,1)

for k = 0:N-1

 for n = 0:N-1

 xk(k+1) = xk(k+1) + X(n+1)*exp(j*pi*2*n*k/N)

 end

end

xk = xk./N;

t = 0:N-1

subplot(411)

stem(t,x);

xlabel('Time (s)');

ylabel('Amplitude');

title('Time domain - Input sequence')

subplot(412)

stem(t,abs(X))

xlabel('Frequency');

ylabel('|X(k)|');

title('Frequency domain - Magnitude response')

subplot(413)

stem(t,angle(X))

xlabel('Frequency');

ylabel('Phase');

title('Frequency domain - Phase response')

subplot(414)

stem(t,xk)

xlabel('Time (s)');

ylabel('Amplitude');

title('Time domain - IDFT sequence')

DIGITAL SIGNAL PROCESSING LAB

 Page 14

INPUT:

Enter x: [10 5 18 9 14 0 4 6 15 21]

OUTPUT:

RESULT:

 DFT Spectral analysis on a continuous time signal was performed and the Power density

spectral graph with respect to frequency was plotted

DIGITAL SIGNAL PROCESSING LAB

 Page 15

4. 8-POINT FFT ALGORITHM

AIM:

To implement 8-point FFT algorithm without using matlab inbuilt function.

APPARATUS:

PC with MATLAB

THEORY:

The DFT is the only transform that is discrete in both the time and the frequency domains, and is

defined for finite-duration sequences. Although it is a computable transform, the straightforward

implementation of it is very inefficient, especially when the sequence length N is large. In 1965

Cooley and Tukey showed a procedure to substantially reduce the amount of computations involved

in the DFT. This led to the explosion of applications of the DFT, including in the digital signal

processing area. Furthermore, it also led to the development of other efficient algorithms. All these

efficient algorithms are collectively known as fast Fourier transform (FFT) algorithms.

Consider an N-point sequence x(n). Its N-point DFT is given by

 Where WN=exp (-j*2*pi)/N.

The FFT algorithms exploit 2 properties of twiddle factor (WN) and reduces the number of complex

multiplications to perform DFT from N
2
 to (N/2)*log2N.This implies about 5000 instead of 10

6

multiplications, a reduction factor of 200.

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

% To implement 8-point FFT algorithm.

clc;

clear all;

close all;

x = input('Enter the N = 8 sequence : ');

N1 = length(x);

DIGITAL SIGNAL PROCESSING LAB

 Page 16

xK1 = fft(x,N1);

xn1 = ifft(xK1);

n=0:N1-1;

subplot (2,2,1);

stem(n,x);

xlabel('n---->');

ylabel('amplitude');

title('input sequence');

subplot (2,2,2);

stem(n,abs(xK1),'r');

xlabel('n---->');

ylabel('magnitude');

title('magnitude response');

subplot (2,2,3);

stem(n,angle(xK1));

xlabel('n---->');

ylabel('phase');

title('Phase responce');

subplot (2,2,4);

stem(n,xn1);

xlabel('n---->');

ylabel('amplitude');

title('IFFT');

INPUT:

Enter sequence x = [1 5 1 9 4 0 4 6]

OUTPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 17

RESULT:

For the given 8 point sequence, DFT is obtained using 8 point DIT FFT and the

corresponding magnitude and phase of the output are plotted.

DIGITAL SIGNAL PROCESSING LAB

 Page 18

5. FIR FILTER (LP/HP) USING RECTANGULAR WINDOW TECHNIQUE

AIM:

To design a FIR filter using Rectangular windowing technique and verify its frequency

response.

APPARATUS:

PC with MATLAB

THEORY:

FIR filter is described by the difference equation

and by the transfer function

The window design method does not produce filters that are optimal but the method is easy to

understand and does produce filters that are reasonably good. Of all the hand-design methods, the

window method is the most popular and effective. In brief, in the window method we develop a

causal linear-phase FIR filter by multipying an ideal filter that has an infinite-duration impulse

response (IIR) by a finite-duration window function:

where h[n] is the practical FIR filter,hd[n] is the ideal IIR prototype filter, and w[n] is the finite-

duration window function. An important consequence of this operation is that the DTFTs of hd[n]

and w[n]undergo circular convolution in frequency

The transfer functions and corresponding impulse responses for the ideal Low pass and High pass

filters are as follows:

Lowpass filters:

Highpass filters:

DIGITAL SIGNAL PROCESSING LAB

 Page 19

Rectangular window:

The rectangular window is simply obtained by segmenting a finite portion of the impulse response

without any shaping in the time domain

and the DTFT of the window is given by

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

% To design of FIR filters using rectangular window

techniques.

clc;

clear all;

close all;

% Low Pass Filter

n=20;

fp=200;

fq=300;

fs=1000;

fn=2*fp/fs;

% window=boxcar(n+1);

window=rectwin(n+1);

b=fir1(n,fn,window);

[H W]=freqz(b,1,128);

subplot(2,1,1);

plot(W/pi,abs(H));

title('magnitude response of lpf');

ylabel('gain in db-------->');

xlabel('normalized frequency------>');

grid on

subplot(2,1,2);

DIGITAL SIGNAL PROCESSING LAB

 Page 20

plot(W/pi,angle(H));

title('phase response of lpf');

ylabel('angle-------->');

xlabel('normalized frequency------>');

grid on

% Highpass Filter

n=20;

fp=300;

fq=200;

fs=1000;

fn=2*fp/fs;

% window=boxcar(n+1);

window=rectwin(n+1);

b=fir1(n,fn,'high',window);

[H W]=freqz(b,1,128);

figure(2)

subplot(2,1,1);

plot(W/pi,abs(H));

title('mag res of hpf');

ylabel('gain in db-------->');

xlabel('normalized frequency------>');

grid on

subplot(2,1,2);

plot(W/pi,angle(H));

title('phase res of hpf');

ylabel('angle-------->');

xlabel('normalized frequency------>');

grid on

OUTPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 21

RESULT:

Thus, the MATLAB program for FIR LP/HP using rectangular window Techniques was

executed and its frequency response is also verified.

DIGITAL SIGNAL PROCESSING LAB

 Page 22

6. FIR FILTER (LP/HP) USING TRIANGULAR WINDOW TECHNIQUE

AIM:

To design a FIR filter using Triangular windowing technique and verify its frequency

response.

APPARATUS:

PC with MATLAB

THEORY:

The window method for a causal linear-phase FIR filter is obtained by multipying an ideal filter

that has an infinite-duration impulse response (IIR) by a finite-duration window function:

where h[n] is the practical FIR filter,hd[n] is the ideal IIR prototype filter, and w[n] is the finite-

duration window function. An important consequence of this operation is that the DTFTs of hd[n]

and w[n] undergo circular convolution in frequency

Triangular (Bartlett) window

The Bartlett window is triangularly shaped

Because the Bartlett window can be thought of as having been obtained by convolving two

rectangular windows of half the width.Its transform is easily obtained by squaring the transform of

the rectangular windows:

The Bartlett window is having a wider mainlobe than the rectangular window, but more attenuated

sidelobes

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

DIGITAL SIGNAL PROCESSING LAB

 Page 23

% To design of FIR filters using triangular window

techniques.

clc;

clear all;

close all;

% Low Pass Filter

n=20;

fp=200;

fq=300;

fs=1000;

fn=2*fp/fs;

window=triang(n+1);

b=fir1(n,fn,window);

[H W]=freqz(b,1,128);

subplot(2,1,1);

plot(W/pi,abs(H));

title('magnitude response of lpf');

ylabel('gain in db-------->');

xlabel('normalized frequency------>');

subplot(2,1,2);

plot(W/pi,angle(H));

title('phase response of lpf');

ylabel('angle-------->');

xlabel('normalized frequency------>');

% Highpass Filter

n=20;

fp=300;

fq=200;

fs=1000;

fn=2*fp/fs;

DIGITAL SIGNAL PROCESSING LAB

 Page 24

window=triang(n+1);

b=fir1(n,fn,'high',window);

[H W]=freqz(b,1,128);

figure(2)

subplot(2,1,1);

plot(W/pi,abs(H));

title('mag res of hpf');

ylabel('gain in db-------->');

xlabel('normalized frequency------>');

subplot(2,1,2);

plot(W/pi,angle(H));

title('phase res of hpf');

ylabel('angle-------->');

xlabel('normalized frequency------>');

OUTPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 25

RESULT:

Thus the MATLAB program for FIR LP\HP using Triangular window Techniques was

executed and its frequency response is also verified.

DIGITAL SIGNAL PROCESSING LAB

 Page 26

7. FIR FILTER (LP/HP) USING KAISER WINDOW TECHNIQUE

AIM:

To design a FIR filter using Kaiser windowing technique and verify its frequency response.

APPARATUS:

PC with MATLAB

THEORY:

The window method for a causal linear-phase FIR filter is obtained by multipying an ideal filter

that has an infinite-duration impulse response (IIR) by a finite-duration window function:

where h[n] is the practical FIR filter,hd[n] is the ideal IIR prototype filter, and w[n] is the finite-

duration window function. An important consequence of this operation is that the DTFTs of hd[n]

and w[n] undergo circular convolution in frequency

Kaiser Window:

A very flexible family of window functions has been developed by Kaiser. These windows are

nearly optimum in the sense of having the largest energy in the mainlobe for a given peak sidelobe

level.

They are closely related to the prolate spheroidal wavefunctions which are the optimum time-

limited, continuous-time functions in a similar sense. The Kaiser windows are of the form,

where I0[] is the modified zeroth-order Bessel function of the first kind and ß is a shape parameter

determining the tradeoff between the mainlobe width and the peak sidelobe level. Typical values for

ß are in the range 4 <ß < 9. I0[] is most easily computed from its power series expansion

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

% To design of FIR filters using Kaiser window techniques.

clc;

DIGITAL SIGNAL PROCESSING LAB

 Page 27

clear all;

close all;

% Low Pass Filter

n=100;

fp=200;

fq=300;

fs=1000;

fn=2*fp/fs;

beta = input('Enter beta value ') % use 0.5 to 2.5

window=kaiser((n+1),beta);

b=fir1(n,fn,window);

[H W]=freqz(b,1,128);

subplot(2,1,1);

plot(W/pi,abs(H));

title('magnitude response of lpf');

ylabel('gain in db-------->');

xlabel('normalized frequency------>');

grid on

subplot(2,1,2);

plot(W/pi,angle(H));

title('phase response of lpf');

ylabel('angle-------->');

xlabel('normalized frequency------>');

grid on

% Highpass Filter

n=100;

fp=300;

fq=200;

fs=1000;

fn=2*fp/fs;

window=kaiser((n+1),beta);

b=fir1(n,fn,'high',window);

[H W]=freqz(b,1,128);

figure(2)

subplot(2,1,1);

plot(W/pi,abs(H));

title('mag res of hpf');

ylabel('gain in db-------->');

xlabel('normalized frequency------>');

grid on

subplot(2,1,2);

DIGITAL SIGNAL PROCESSING LAB

 Page 28

plot(W/pi,angle(H));

title('phase res of hpf');

ylabel('angle-------->');

xlabel('normalized frequency------>');

grid on

INPUT::

enter the passband ripple: 0.02

enter the stopband ripple: 0.01

enter the passband frequency: 1000

enter the stopband frequency: 1500

enter the sampling frequency: 10000

enter the beta value: 1.2

OUTPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 29

RESULT:

Thus the MATLAB program for FIR LP\HP using Triangular window Techniques was

executed and its frequency response is also verified.

DIGITAL SIGNAL PROCESSING LAB

 Page 30

8. IIR BUTTERWORTH FILTER IMPLEMENTATION

AIM: Program for Design of Butterworth Analog Low-pass/High-pass Filter.

SOFTWARE: MATLAB

PROGRAM:

% To implement LP IIR filter for a given sequence

clc;

close all;

clear all;

format long

rp=input('enter the passband ripple');

rs=input('enter the stopband ripple');

wp=input('enter the passband freq');

ws=input('enter the stopband freq');

fs=input('enter the sampling freq');

w1=2*wp/fs;

w2=2*ws/fs;

% LPF

[n,wn]= buttord(w1,w2,rp,rs);

[b,a]= butter(n,wn);

w = 0:.01:pi;

[h,om]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

figure(1)

subplot(2,1,1);plot(om/pi,m);

ylabel('Gain in dB --.');

xlabel('(a) Normalised frequency --.');

grid on

subplot(2,1,2);

plot(om/pi,an);

xlabel('(b) Normalised frequency --.');

ylabel('Phase in radians --.');

grid on

% HPF

[n,wn]=buttord(w1,w2,rp,rs,'s');

[b,a]=butter(n,wn,'high','s');

w=0:.01:pi;

[h,om]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

figure(2)

subplot(2,1,1);

plot(om/pi,m);

ylabel('Gain in dB --.');

DIGITAL SIGNAL PROCESSING LAB

 Page 31

xlabel('(a) Normalised frequency --.');

grid on

subplot(2,1,2);

plot(om/pi,an);

xlabel('(b) Normalised frequency --.');

ylabel('Phase in radians --.');

grid on

INPUT::

enter the passband ripple: 10

enter the stopband ripple: 15

enter the passband frequency: 1000

enter the stopband frequency: 1500

enter the sampling frequency: 5000

OUTPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 32

RESULT:

Thus the MATLAB program for IIR LP\HP using butterworth filter and its frequency

response is also verified.

DIGITAL SIGNAL PROCESSING LAB

 Page 33

9. IIR CHEBYSHEV FILTER IMPLEMENTATION

AIM: Program for Design of Chebyshev Analog Low-pass/High-pass Filter.

SOFTWARE: MATLAB

PROGRAM:

% To implement LP IIR filter for a given sequence

clc;

close all;

clear all;

format long

rp=input('enter the passband ripple');

rs=input('enter the stopband ripple');

wp=input('enter the passband freq');

ws=input('enter the stopband freq');

fs=input('enter the sampling freq');

w1=2*wp/fs;

w2=2*ws/fs;

% LPF

[n,wn]= cheb1ord (w1,w2,rp,rs);

[b,a]= cheby1(n,wn);

w = 0:.01:pi;

[h,om]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

figure(1)

subplot(2,1,1);plot(om/pi,m);

ylabel('Gain in dB --.');

xlabel('(a) Normalised frequency --.');

grid on

subplot(2,1,2);

plot(om/pi,an);

xlabel('(b) Normalised frequency --.');

ylabel('Phase in radians --.');

grid on

% HPF

[n,wn]= cheb1ord(w1,w2,rp,rs,'s');

[b,a]= cheby1(n,wn,'high','s');

w=0:.01:pi;

[h,om]=freqz(b,a,w);

m=20*log10(abs(h));

an=angle(h);

figure(2)

subplot(2,1,1);

plot(om/pi,m);

ylabel('Gain in dB --.');

DIGITAL SIGNAL PROCESSING LAB

 Page 34

xlabel('(a) Normalised frequency --.');

grid on

subplot(2,1,2);

plot(om/pi,an);

xlabel('(b) Normalised frequency --.');

ylabel('Phase in radians --.');

grid on

INPUT::

enter the passband ripple: 10

enter the stopband ripple: 15

enter the passband frequency: 1000

enter the stopband frequency: 1500

enter the sampling frequency: 5000

OUTPUT:

DIGITAL SIGNAL PROCESSING LAB

 Page 35

RESULT:

Thus the MATLAB program for IIR LP\HP using butterworth filter and its frequency

response is also verified.

DIGITAL SIGNAL PROCESSING LAB

 Page 36

10. UPSAMPLING A SINUSOIDAL SIGNAL

AIM:

 To generate the up sample (interpolation) by an integer factor

APPARATUS:

PC with MATLAB

PROGRAM:

% Program for upsampling a sinusoidal signal by factor L

N=input('Input length of the sinusoidal sequence=');

L=input('Up Samping factor=');%take min 1000

fi=input('Input signal frequency=');

intv = 1/N;

% Generate the sinusoidal sequence for the specified length N

n=0:intv:1; % range of time

x=5*sin(2*pi*fi*n);

% Generate the upsampled signal

y=zeros (1,L*length(x));

y([1:L:length(y)])=x;

%Plot the input sequence

subplot (2,1,1);

stem (n,x);

title('Input Sequence');

xlabel('Time n');

ylabel('Amplitude');

%Plot the output sequence

subplot (2,1,2);

stem (n,y(1:length(x)));

title(['output sequence,upsampling factor=',num2str(L)]);

xlabel('Time n');

ylabel('Amplitude');

INPUT::

Input length of the sinusoidal sequence=50

Up Samping factor=2

Input signal frequency=3

OUTPUT

DIGITAL SIGNAL PROCESSING LAB

 Page 37

PROGRAM:

% Interpolation of the Signal

clc;

clear all;

close all;

N=20;

n=0:1:N-1;

x=sin(2*pi*n/15);

L=2;

figure(1)

subplot(3,1,1)

stem(n,x);

grid on;

xlabel('No.of.Samples');

ylabel('Amplitude');

title('Original Sequence');

x1=[zeros(1,L*N)];

n1=1:1:L*N;

j =1:L:L*N;

x1(j)=x;

figure(1)

subplot(3,1,2)

stem(n1-1,x1);

grid on;

xlabel('No.of.Samples');

DIGITAL SIGNAL PROCESSING LAB

 Page 38

ylabel('Amplitude');

title('Upsampled Sequence');

a=1;

b=fir1(5,0.5,'Low');

y=filter(b,a,x1);

figure(1)

subplot(3,1,3)

stem(n1-1,y);

grid on;

xlabel('No.of.Samples');

ylabel('Amplitude');

title('Interpolated upsampled Sequence');

OUTPUT

DIGITAL SIGNAL PROCESSING LAB

 Page 39

11. DOWNSAMPLING A SINUSOIDAL SIGNAL

AIM:

 To generate the down sample (decimation) by an integer factor

APPARATUS:

PC with MATLAB

PROGRAM:

% Program for downsampling a sinusoidal signal by factor M

clc; clear all; close all;

N=input('Input length of the sinusoidal sequence=');

M=input('Down Samping factor=');%take min 1000

fi=input('Input signal frequency=');

intv = 1/N;

% Generate the sinusoidal sequence for the specified length N

m=0:intv:1; % range of time

x=5*sin(2*pi*fi*m);

%Plot the input sequence

subplot (2,1,1);

stem (m,x);

title('Input Sequence');

xlabel('Time n');

ylabel('Amplitude');

% Generate the upsampled signal

myrem = rem(length(x),M);

x = [x zeros(1,myrem)];

y = x(1:M:length(x));

%Plot the output sequence

subplot (2,1,2);

stem (m(1:length(y)),y);

title(['output sequence,downsampling factor=',num2str(M)]);

xlabel('Time n');

ylabel('Amplitude');

INPUT::

Input length of the sinusoidal sequence=100

Down Samping factor=3

Input signal frequency=2

OUTPUT

DIGITAL SIGNAL PROCESSING LAB

 Page 40

PROGRAM:

% To generate the down sample (decimation) by an Integer

factor

clc;

clear all;

close all;

N=20 ;

n=0:1:N-1;

x=sin(2*pi*n/15);

M=2;

figure(1)

subplot(3,1,1)

stem(n,x);

grid on;

xlabel('No.of.Samples');

ylabel('Amplitude');

title('Original Sequence');

a=1;

b=fir1(5,0.5,'Low');

y=filter(b,a,x);

figure(1)

subplot(3,1,2)

stem(n,y);

grid on;

DIGITAL SIGNAL PROCESSING LAB

 Page 41

xlabel('No.of.Samples');

ylabel('Amplitude');

title('Filtered Sequence');

x1=y(1:M:N);

n1=1:1:N/M;

figure(1)

subplot(3,1,3)

stem(n(1:length(x1)),x1);

grid on;

xlabel('No.of.Samples');

ylabel('Amplitude');

title('Decimated Sequence');

OUTPUT

DIGITAL SIGNAL PROCESSING LAB

 Page 42

ADDITIONAL EXPERIMENTS

1. POWER SPECTRAL DENSITY ESTIMATION

AIM:

 To calculate the power spectral density of a signal and plot the power distribution of the

signal versus frequency graph

APPARATUS:

PC with MATLAB

THEORY:

The discrete Fourier transform (DFT) maps a finite number of discrete time-domain samples to the

same number of discrete Fourier-domain samples. Being practical to compute, it is the primary

transform applied to real-world sampled data in digital signal processing. The DFT has special

relationships with the discrete-time Fourier transform and the continuous-time Fourier transform

that let it be used as a practical approximation of them through truncation and windowing of an

infinite-length signal. Different window functions make various tradeoffs in the spectral distortions

and artifacts introduced by DFT-based spectrum analysis.

The DFT transforms N samples of a discrete-time signal to the same number of discrete frequency

samples, and is defined as

The DFT is invertible by the inverse discrete Fourier transform (IDFT):

The DFT and IDFT are a self-contained, one-to-one transform pair for a length-N discrete-time

signal. The DFT is notmerely an approximation to the DTFT. However, the DFT is very often used

as a practical approximation to the DTFT.

PROCEDURE:-

 Open MATLAB

 Open new M-file

 Type the program

 Save in current directory

 Compile and Run the program

 For the output see command window\ Figure window

PROGRAM:

clc;

https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#IDFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DTFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DFTequation
https://cnx.org/contents/4jyGq_c3@6/Spectrum-Analysis-Using-the-Di#DTFTequation

DIGITAL SIGNAL PROCESSING LAB

 Page 43

closeall;

clearall;

Fs = 1000;

t = 0:1/Fs:1-1/Fs;

x = cos(2*pi*100*t) + randn(size(t));

N = length(x);

xdft = fft(x);

xdft = xdft(1:N/2+1);

psdx = (1/(Fs*N)) * abs(xdft).^2;

psdx(2:end-1) = 2*psdx(2:end-1);

freq = 0:Fs/length(x):Fs/2;

plot(freq,10*log10(psdx))

gridon

title('Power Spectral Density')

xlabel('Frequency (Hz)')

ylabel('Power (dB)')

OUTPUT:

RESULT:

 DFT Spectral analysis on a continuous time signal was performed and the Power density

spectral graph with respect to frequency was plotted

