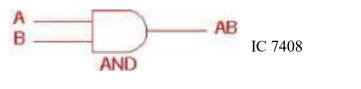
EXPERIMENT-7

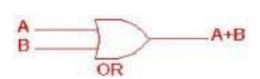
Objective:To study logic gates.


Resources Required: logic gates verification kit

Theory:

Logic gates are electronic circuits which perform logical functions on one or more inputs to produce one output. There are seven logic gates. When all the input combinations of a logic gate are written in a series and their corresponding outputs written along them, then this input/ output combination is called Truth Table. Various gates and their working is explained here.

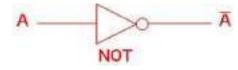
AND Gate


AND gate produces an output as 1, when all its inputs are 1; otherwise the output is 0. This gate can have minimum 2 inputs but output is always one. Its output is 0 when any input is 0.

Input AND gate		
A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

OR gate produces an output as 1, when any or all its inputs are 1; otherwise the output is 0. This gate can have minimum 2 inputs but output is always one. Its output is 0 when all input are 0.

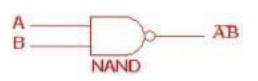


2 Input OR gate		
A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

IC7432

NOT Gate

NOT gate produces the complement of its input. This gate is also called an INVERTER. It always has one input and one output. Its output is 0 when input is 1 and output is 1 when input is0.

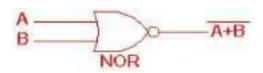


NOT	gate
A	Ā
0	1
1	0

IC7404

NAND Gate

NAND gate is actually a series of AND gate with NOT gate. If we connect the output of an AND gate to the input of a NOT gate, this combination will work as NOT-AND or NAND gate. Its output is 1 when any or all inputs are 0, otherwise output is 1.

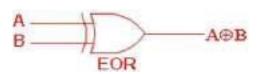


2 Input NAND gate		
Α	B	A.B
0	0	1
0	1	1
1	0	1
1	1	0

IC 7400

NOR Gate

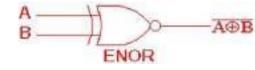
NOR gate is actually a series of OR gate with NOT gate. If we connect the output of an OR gate to the input of a NOT gate, this combination will work as NOT-OR or NOR gate. Its output is 0 when any or all inputs are 1, otherwise output is 1.



2 Input NOR gate		
A	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

IC 7402

Exclusive OR (X-OR) Gate


X- OR gate produces an output as 1, when number of 1's at its inputs isodd, otherwise output is It has two inputs and one output.

2 Input EXOR gate		
A	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive NOR (X-NOR) Gate

X-NOR gate produces an output as 1, when number of 1's at its inputs is not odd, otherwise output is 0. It has two inputs and one output.

2 Input EXNOR gate		
A	В	A⊕B
0	0	1
0	1	0
1	0	0
1	640	1

Procedure:

- 1. Connect the trainer kit to ac power supply.
- 2. Connect the inputs of any one logic gate to the logic sources and its output to the logic indicator.
- 3. Apply various input combinations and observe output for each one.
- 4. Verify the truth table for each input/ output combination.
- 5. Repeat the process for all other logic gates.
- 6. Switch off the ac power supply.

<u>Result:</u>Boolean expression &law verified.