EXPERIMENT-8

Objective: To design and simulate parity generator using VHDL.

Resources Required:

Hardware Requirement: Computer
Software Requirement: XILINX 8.2 Software

Theory:

Parity evaluates whether the number of " 1 " bits in a binary code is odd or even. This provides a simple means of error checking. There are two types of parity with opposite results. Even parity results in a " 1 " if there are an odd number of " 1 " bits in the original code, and " 0 " if there are an even number. The even parity bit can be appended to the code to make the number of " 1 " bits even. Odd parity results in a " 0 " if there are an odd number of " 1 " bits, and " 1 " if there are an even number. The odd parity bit can be appended to the code to make the number of " 1 " bits odd.

Truth Table:

D7	D6	D5	D4	D3	D2	D1	D0	Even_parity	Odd_parity
1	0	1	1	0	0	1	0	0	1
1	1	0	0	1	0	0	0	1	0
1	1	1	1	1	0	1	1	1	0
1	0	1	1	1	1	1	0	0	1
0	0	1	0	1	0	1	0	1	0
0	1	1	1	0	1	0	1	1	0
0	1	0	1	0	0	1	1	0	1

VHDL Code:

```
library ieee;
use ieee.std_logic_1164.all;
entity parity is
port( data:in bit_vector(7 downto 0);
                                even_p,odd_p: out bit);
```

end parity;
architecture parity_gen of parity is
signal temp : bit_vector(5 downto 0);
begin
temp (0) <=data(0) xor data(1);
temp (1) <=temp (0) xor data(2);
temp (2) <=temp (1) xor data (3);
temp (3) <=temp (2) xor data (4);
temp (4) <=temp (3) xor data(5);
temp (5) <=temp (4) xor data (6);
even_p <= temp(5) xor data(7);
odd_p <= not(temp(5) xor data(7));
end parity_gen;

Output:

	Name	$\begin{aligned} & \text { Val } \\ & 14 . \end{aligned}$	0ps $\quad 10.0 \mathrm{~ns}$		20.0ns		30.0 ns	40.0 ns	50.0 ns	60.0ns	
			14.075 ns								
D 0	T data	B11	10000011	111	11011	- 10111		01111011	$\times 00011100 \times 10$		
(2) 9	$\begin{aligned} & \text { even_p } \\ & \text { odd_p } \end{aligned}$	1				0					
(a) 10											

Results:VHDL codes of parity generator is simulated \& synthesized.

