

Objective: To design and simulate parity generator using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

Parity evaluates whether the number of “1” bits in a binary code is odd or even. This provides a simple

means of error checking. There are two types of parity with opposite results.

“1” if there are an odd number of “1” bits in the original code, and “0” if there are an even number. The

even parity bit can be appended to the code to make the number of “1” bits even.

“0” if there are an odd number of “1” bits, and “1” if there are an even number. The odd parity bit can

be appended to the code to make the number of “1” bits odd.

Truth Table:

32

EXPERIMENT-8

To design and simulate parity generator using VHDL.

Software Requirement: XILINX 8.2 Software

Parity evaluates whether the number of “1” bits in a binary code is odd or even. This provides a simple

means of error checking. There are two types of parity with opposite results. Even parity res

“1” if there are an odd number of “1” bits in the original code, and “0” if there are an even number. The

even parity bit can be appended to the code to make the number of “1” bits even. Odd parity results in a

“1” bits, and “1” if there are an even number. The odd parity bit can

be appended to the code to make the number of “1” bits odd.

Parity evaluates whether the number of “1” bits in a binary code is odd or even. This provides a simple

Even parity results in a

“1” if there are an odd number of “1” bits in the original code, and “0” if there are an even number. The

Odd parity results in a

“1” bits, and “1” if there are an even number. The odd parity bit can

VHDL Code:

library ieee;

use ieee.std_logic_1164.all;

entity parity is

 port(data:in bit_vector(7

 even_p,odd_p: out bit);

end parity;

architecture parity_gen of parity is

signal temp : bit_vector(5 downto 0);

 begin

 temp(0)<=data(0) xor data(1);

 temp(1)<=temp(0) xor data(2);

 temp(2)<=temp(1) xor data(3);

 temp(3)<=temp(2) xor data(4);

 temp(4)<=temp(3) xor data(5);

 temp(5)<=temp(4) xor data(6);

 even_p <= temp(5) xor data(7);

 odd_p <= not(temp(5) xor data(7));

end parity_gen;

Output:

Results:VHDL codes of parity generator

33

use ieee.std_logic_1164.all;

port(data:in bit_vector(7 downto 0);

even_p,odd_p: out bit);

architecture parity_gen of parity is

signal temp : bit_vector(5 downto 0);

temp(0)<=data(0) xor data(1);

temp(1)<=temp(0) xor data(2);

temp(2)<=temp(1) xor data(3);

mp(3)<=temp(2) xor data(4);

temp(4)<=temp(3) xor data(5);

temp(5)<=temp(4) xor data(6);

even_p <= temp(5) xor data(7);

odd_p <= not(temp(5) xor data(7));

parity generator is simulated & synthesized.

