

LAB MANUAL

CMOS Digital VLSI Design Lab

Bachelor of Technology

Electronics & Communication Engineering

Department of Electronics & Communication

School of Studies of Engineering & Technology

Guru Ghasidas Vishwavidyalaya

Bilaspur

Website:

1

LAB MANUAL

EC206PPC09

CMOS Digital VLSI Design Lab

Bachelor of Technology

in

Electronics & Communication Engineering

Department of Electronics & Communication

Engineering

Studies of Engineering & Technology

Guru Ghasidas Vishwavidyalaya

Bilaspur-495009 (C. G.)

Website: www.ggu.ac.in

Electronics & Communication Engineering

Department of Electronics & Communication

Studies of Engineering & Technology

2

SCHOOL OF STUDIES OF ENGINEERING & TECHNOLOGY

GURU GHASIDAS VISHWAVIDYALAYA, BILASPUR (C.G.)

(A CENTRAL UNIVERSITY)

CBCS-NEW SYLLABUS

B. TECH. THIRD YEAR (Electronics and Communication Engineering)

Vision and Mission of the Institute

Vision

To be a leading technological institute that imparts
transformative education to create globally competent
technologists, entrepreneurs, researchers and leaders for a
sustainable society

Mission

1
To create an ambience of teaching learning through
transformative education for future leaders with professional
skills, ethics, and conduct.

2
To identify and develop sustainable research solutions for the
local and global needs.

3
To build a bridge between the academia, industry and society to
promote entrepreneurial skills and spirit

Vision and Mission of the Department

Vision

The Department endeavours for academic excellence in
Electronics & Communication Engineering by imparting in depth
knowledge to the students, facilitating research activities and
cater to the ever-changing industrial demands, global and
societal needs with leadership qualities.

Mission

1

To be the epitome of academic rigour, flexible to accommodate
every student and faculty for basic, current and future
technologies in Electronics and Communication Engineering with
professional ethics.

2 To develop an advanced research centre for local & global needs.

3 To mitigate the gap between academia, industry & societal
needs through entrepreneurial and leadership promotion.

Program Educational Objectives (PEOs)

The graduate of the Electronics and Communication Engineering Program will

PEO1: Have fundamental and progressive knowledge along with research initiatives in

the field of Electronics & Communication Engineering.

PEO2: Be capable to contrive solutions for electronic & communication systems for real

world applications which are technically achievable and economically feasible leading to

academia, industry, government and social benefits.

PEO3: Have performed effectively in a multi-disciplinary environment and have self-

learning & self-perceptive skills for higher studies, professional career or entrepreneurial

3

endeavors to be confronted with a number of difficulties.

PEO4: Attain team spirit, communication skills, ethical and professional attitude for

lifelong learning.

Programme Outcomes: Graduates will be able to:

PO1: Fundamentals: Apply knowledge of mathematics, science and engineering.

PO2: Problem analysis: Identify, formulate and solve real time engineering

problems using first principles.

PO3: Design: Design engineering systems complying with public health, safety, cultural,

societal and environmental considerations

PO4: Investigation: Investigate complex problems by analysis and interpreting the

data to synthesize valid solution.

PO5: Tools: Predict and model by using creative techniques, skills and IT tools necessary

for modern engineering practice.

PO6: Society: Apply the knowledge to assess societal, health, safety, legal and

cultural issues for practicing engineering profession.

PO7: Environment: Understand the importance of the environment for sustainable

development.

PO8: Ethics: Apply ethical principles and commit to professional ethics, and

responsibilities and norms of the engineering practice.

PO9: Teamwork: Function effectively as an individual and as a member or leader in

diverse teams and multidisciplinary settings.

PO10: Communication: Communicate effectively by presentations and writing reports.

PO11: Management: Manage projects in multidisciplinary environments as member

or a team leader.

PO12: Life-long learning: Engage in independent lifelong learning in the broadest

context of technological change.

Programme Specific Outcomes:

PSO1: Identify, formulate and apply concepts acquired through Electronics &

Communication Engineering courses to the real-world applications.

PSO2: Design and implement products using the cutting-edge software and hardware

tools to attain skills for analyzing and developing subsystem/processes.

PSO3: Ability to adapt and comprehend the technology advancement in research and

contemporary industry demands with demonstration of leadership qualities and

betterment of organization, environment and society.

4

Sub Code L T P Duration IA ESE Total Credits

EC206PPC09 - - 2 2 Hours 30 20 50 1

CMOS DIGITAL VLSI DESIGN LAB

Course Objectives:

 To know the basic language features of verilog HDL and the role of HDL in digital logic

design.

 To know the behavioural modeling of combinational and simple sequential circuits.

 To know the data flow modeling of combinational and simple sequential circuits.

 To know the structural modeling of combinational and simple sequential circuits.

 To know the synthesis of combinational and sequential descriptions.

Course Outcomes:

At the end of the course, the students will able to:

 CO1 Demonstrate knowledge on HDL design flow, digital circuits design, counter's flip flops.

CO2 Design and develop the combinational and sequential circuits using behavioral modeling.

CO3 Design and develop the combinational and sequential circuits using Data flow modeling.

CO4 Design and develop the combinational and sequential circuits using Structural modeling.

CO5 Analyze the process of synthesizing the combinational and sequential descriptions.

Course Outcomes and their mapping with Program Outcomes & Program Specific Outcomes:

CO PO PSO

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1 3 2 2 2 3 3 3 3 2 2

CO2 3 2 2 2 3 3 3 3 2 2

CO3 3 2 2 2 3 3 3 3 3 2

CO4 3 2 2 2 3 3 3 3 3 3

CO5 3 2 2 2 3 3 3 3 3 3

5

Exp.
No. Name of Experiment Page

No.

1. To design and simulate various gates using VHDL. 8-15

2. To design and simulate half adder using VHDL. 16-17

3. To design and simulate full adder using VHDL. 18-19

4. To design and simulate multiplexer using VHDL. 20-22

5. To design and simulate demultiplexer using VHDL. 23-25

6. To design and simulate encoder using VHDL. 26-27

7. To design and simulate decoder using VHDL. 28-31

8. To design and simulate parity generator using VHDL. 32-33

9. To design different types of flip flops using VHDL. 34-42

10. To design and different types of counters using VHDL. 43-48

6

INTRODUCTION TO VHDL

Introduction to VHDL:

It is a hardware description language that can be used to model a digital system at many levels of

abstraction ranging from the algorithmic level to the gate level. The system may be a single gate to a

complete digital electronic system. VHDL is a hardware description language used in electronic design

automation to describe digital and mixed-signal system such as field-programmable gate arrays and

integrated circuits. VHDL can also be used as a general purpose parallel programming language. It can

be considered a combination of following languages as:

a) Sequential language

b) Concurrent language

c) Net list language

d) Timing language

e) Waveform Generation language

Need of VHDL:

The requirement for it was generated in 1981 under very high speed integrated circuit (VHSIC)

program. In this program a number of US companies were involved in designing VHSIC chips for

Department of defense (DoD). Most of the companies were using different hardware description to

describe and develop their IC, as a result different vendors could not efficiently exchange designing

with one another. Also they were provided DoD, descriptions of their chips in different hardware

description language. Reuse was also an issue, thus a need for a standard language for design and

documentation of the digital system was generated.

Capabilities of VHDL:

1. It is used as an exchange medium between different chip vendors and CAD tool users.

2. It can be used for communication medium between different CAD and CAE tools.

3. Digital system can be modeled a set of interconnected components. Each component in turn van be

modeled a s set of interconnected components further.

4. It supports flexible design methodologies: Top-down Bottom-up mixed

5. It is not technology specific but it is capable of supported technology specific features.

6. It supports both synchronous and asynchronous timing modules.

7. It is an IEEE and ANSI standard.

7

8. It supports three basic different description styles.

9. It supports a wide range of abstraction levels ranging from abstract behavioral descriptors to vary

precise gate level descriptions.

10. It has element that make large scale design modeling easier such as components, functions and

procedure and package.

11. It is publically available, human readable and above all, it is not proprietary.

Steps to Implement the Design:

Step 1: Start the Xilinx project navigator by Stat->programs->Xilinx ISE->Project Navigator Step 2: In

the project navigator window click on new project->give file name->next.

Step 3: In the projector window right click on project name-> new source->VHDL module->give file

name->define ports->finish.

Step 4: Write the VHDL code for any gate or circuit.

Step 5: Check Syntax and remove error if present.

Step 6: Simulate design using Modelsim/ISIM.

Step 7: In the project navigator window click on simulation->click on simulate behavioral model. Step

Step 8: Give inputs by right click on any input->force constant

Step 9: Run simulation

Step 10: Analyze the waveform.

8

A
B
b

Y

EXPERIMENT-1

Objective: To design and simulate various gates using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

Logic gates are the essential building blocks of digital circuits. These basic logic gates are used in

Embedded Systems, Microcontrollers, Microprocessors, etc.

a) AND Gate: A logic circuit whose output is logic ‘1’ if and only if all of its inputs are logic ‘1’.

 Logic diagram

Truth table

Inputs Output
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Boolean Expression

Y = A AND B

= A.B

VHDL Code:

--The IEEE standard 1164 package, declares std_logic, etc.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

 Entity Declarations

entity andgate is

Port (A : in std_logic;

 B : in std_logic;

 Y : out std_logic

);

end andgate;

9

500 1000 1500 2000 2500 3000 ns

A

 B

Y

A
B

 Y

architecture AND GATE of andgate is

begin

Y<= A and B ;

end AND GATE;

Output:

b) OR Gate: A logic gate whose output is logic ‘0’ if and only if all of its inputs are logic ‘0’.

 Logic diagram

Truth table

Inputs Output
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Boolean Expression

Y = A OR B

= A + B

VHDL Code:

--The IEEE standard 1164 package, declares std_logic, etc.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

 Entity Declarations

entity orgate is

Port (A : in std_logic;

 B : in std_logic;

 Y : out std_logic

10

A Y

);

end orgate;

architecture OR GATE of orgate is

begin

Y<= A or B ;

end OR GATE;

Output:

A

B

Y

c) NOT Gate: A logic gate whose output is complement of its input.

 Logic diagram

 Truth table

Inputs Output
A Y
0 1
1 0

Boolean Expression

Y = NOT A

VHDL Code:

--The IEEE standard 1164 package, declares std_logic, etc.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

 Entity Declarations

entity notgate is

Port (A : in std_logic;

 Y : out std_logic

);

11

Y

A

ns 4500 4000 3500 3000 2500 2000 1500 1000 500

A
B

 Y

end notgate;

architecture NOT GATE of notgate is

begin

Y<= not A ;

end NOT GATE;

Output:

d) NAND Gate: A logic gate which gives logic ‘0’ output if and only if all of its inputs are logic ‘1’

Logic diagram

Truth table

Inputs Output
A B Y
0 0 1
0 1 1
1 0 1
1 1 0

Boolean Expression

Y = A NAND B

= 𝐴. 𝐵തതതതത

VHDL Code:

--The IEEE standard 1164 package, declares std_logic, etc.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

 Entity Declarations

entity nandgate is

Port (A : in std_logic;

 B : in std_logic;

12

A
B

 Y

 Y : out std_logic

);

end nandgate;

architecture NAND GATE of nandgate is

begin

Y<= A nand B ;

end NAND GATE;

Output:

e) NOR Gate: A logic gate whose output logic is ‘1’ if and only if all of its inputs are logic ‘0’

 Logic diagram

Truth table

Inputs Output
A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Boolean Expression

Y = A NOR B

= 𝐴 + 𝐵തതതതതതതത

VHDL Code:

--The IEEE standard 1164 package, declares std_logic, etc.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

y

b

a

ns 4500 4000 3500 3000 2500 2000 1500 1000 500

13

A
B

 Y

 Entity Declarations

entity norgate is

Port (A : in std_logic;

 B : in std_logic;

 Y : out std_logic

);

end norgate;

architecture NOR GATE of norgate is

begin

Y<= A nor B ;

end NOR GATE;

Output:

f) XOR Gate: A logic gate whose output is logic ‘0’ when all the inputs are equal and logic ‘1’ when

they are unequal.

Logic diagram

Truth table

Inputs Output
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Boolean Expression

Y = A XOR B

= 𝐴̅𝐵 + 𝐵ത𝐴

VHDL Code:

--The IEEE standard 1164 package, declares std_logic, etc.

Y

B

A

ns 4000 3500 3000 2500 2000

14

A
B

 Y

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

 Entity Declarations

entity xorgate is

Port (A : in std_logic;

 B : in std_logic;

 Y : out std_logic

);

end xorgate;

architecture XOR GATE of xorgate is

begin

Y<= A xor B ;

end XOR GATE;

Output:

g) XNOR Gate: A logic gate that produces logic ‘1’ only when the two inputs are equal.

Logic diagram

Truth table

Inputs Output
A B Y
0 0 1
0 1 0
1 0 0
1 1 1

Boolean Expression

Y = A XNOR B

= 𝐴̅𝐵ത + 𝐴𝐵

15

VHDL Code:

--The IEEE standard 1164 package, declares std_logic, etc.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

 --Entity Declarations

entity xorgate is

Port (A : in std_logic;

 B : in std_logic;

 Y : out std_logic

);

end xnorgate;

architecture XNOR GATE of xnorgate is

begin

Y<= A xnor B ;

end XNOR GATE;

Output:

A

B

Y

Results:VHDL codes of all logic gates are simulated & synthesized

16

EXPERIMENT-2

Objective: To design and simulate half adder using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

Half adders' primary function is to add two bits or two digits, so the input port has two variables, a and

b which corresponds to the digits/numbers that have to be added. The result of adding two bits/digits is

the sum (s) and the carryout (c) which corresponds to the outputs ports.

Truth Table:

INPUTS OUTPUTS

a b s c

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1
Boolean Expression

s= a xor b;

c = a and b;

VHDL Code:

Dataflow Modelling

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

 --Entity Declarations

entity halfadder is

port(a,b: in std_logic;

 s,c: out std_logic);

end halfadder;

architecture dataflow of halfadder is

begin

17

HALF ADDER

s<= a xor b;

c<= a and b;

end dataflow;

Output:

RTL Schematic

Results:VHDL codes of half adder is simulated & synthesized

18

EXPERIMENT-3

Objective: To design and simulate full adder using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

Full adder is the adder which adds three inputs and produces two outputs. The first two inputs are a and

b and the third input is an input carry as c. The output carry is designated as cy and the normal output is

designated as s which is SUM.

Truth Table:

INPUTS OUTPUTS

a b c s cy
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Boolean Expression

s = (a xor b)xor c;

cy = (a and b) or (b and c) or (c and a);

VHDL Code:

Dataflow Modelling

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.std_logic_unsigned.all;

 --Entity Declarations

entity fulladder is

port(a,b,c: in std_logic;

 s,cy: out std_logic);

end fulladder;

19

FULL ADDER

architecture dataflow of fulladder is

begin

s<= (a xor b)xor c;

cy<= (a and b) or (b and c) or (c and a);

end dataflow;

Output:

RTL Schematic

Results:VHDL codes of full adder is simulated & synthesized

20

EXPERIMENT- 4

Objective: To design and simulate multiplexer using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

Multiplexer is simply a data selector. It has multiple inputs and one output. Any one of the input line is

transferred to output depending on the control signal. This type of operation is usually referred as

multiplexing. In 8:1 multiplexer, there are 8 inputs. Any of these inputs are transferring to output,

which depends on the control signal. For 8 inputs we need 3 bit wide control signal. If control signal is

“000” then the fist input is transferring to output line. If thee control signal is “111” then the last input

is transferring to output. Similarly, for all values of control signals.

Figure 4.1 : Logical Diagram of 8:1 Mux

Truth Table:

21

Simplified as:

Boolean Expression

Application: Communication systems for modulation purpose, telephone networks, parallel to serial convertor.

VHDL Code:

Behavioral Modelling

entity mux is

Port (s : in STD_LOGIC_VECTOR (2 downto 0);

x : in STD_LOGIC_VECTOR (7 downto 0);

y : out STD_LOGIC);

end mux;

architectureBehavioral of mux is

begin

process(s,x)

begin

if s="000" then y<=x(0);

elsif s="001" then y<=x(1);

elsif s="010" then y<=x(2);

elsif s="011" then y<=x(3);

elsif s="100" then y<=x(4);

elsif s="101" then y<=x(5);

elsif s="110" then y<=x(6);

elsif s="111" then y<=x(7);

22

end if;

end process;

end Behavioral;

Output:

RTL Schematic

Results:VHDL codes of 8:1 Multiplexer is simulated & synthesized.

23

EXPERIMENT- 5

Objective: To design and simulate demultiplexer using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

A digital combinational circuit which takes one input signal and generates multiple output signals is

known as demultiplexer or DEMUX. As it distributes a single input signal over many output lines,

hence it is also referred to as a type of data distributor.

In a demultiplexer, there is only 1 input line and 2n output lines. Where, n denotes the number of select

lines. Therefore, it can be noted that a demultiplexer reverses the operation of a multiplexer. In 1 to 8

demultiplexer, there are total of eight outputs, i.e., Y0, Y1, Y2, Y3, Y4, Y5, Y6, and Y7, 3 selection

lines, i.e., S0, S1and S2 and single input, i.e., a. On the basis of the combination of inputs which are

present at the selection lines S0, S1 and S2, the input will be connected to one of these outputs.

Truth Table:

DATA
INPUT

SELECT
INPUTS

OUTPUTS

a S2 S1 S0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
a 0 0 0 a 0 0 0 0 0 0 0
a 0 0 1 0 a 0 0 0 0 0 0
a 0 1 0 0 0 a 0 0 0 0 0
a 0 1 1 0 0 0 a 0 0 0 0
a 1 0 0 0 0 0 0 a 0 0 0
a 1 0 1 0 0 0 0 0 a 0 0
a 1 1 0 0 0 0 0 0 0 a 0
a 1 1 1 0 0 0 0 0 0 0 a

Applications of Demultiplexers: Digital demultiplexers are combinational devices controlled by a

selector address that routes input data to one of many outputs of the demultiplexers. These can be used

in data demultiplexing, clock demultiplexing, memory addressing, four phase clock generator, function

generation using DMUX, switch encoding, serial to parallel converter.

VHDL Code:

use ieee.std_logic_1164.all;

entity dmux81 is

port(a: in std_logic;s: in std_logic_vector(2 downto 0);

24

 y: out std_logic_vector(0 to 7));

end dmux81;

architecture dmux of dmux81 is

begin

process(a,s)

begin y<="00000000";

case s is

when "000"=> y(0)<=a; when "001"=> y(1)<=a; when "010"=> y(2)<=a;

when "011"=> y(3)<=a; when "100"=> y(4)<=a; when "101"=> y(5)<=a;

when "110"=> y(6)<=a; when "111"=> y(7)<=a;

when others=> y<="UUUUUUUU";

end case; end process;

end dmux;

Output:

RTL Schematic

DMUX81

25

Results:VHDL codes of 1:8 demultiplexer is simulated & synthesized.

26

EXPERIMENT-6

Objective: To design and simulate encoder using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

An encoder is a digital circuit that converts a set of binary inputs into a unique binary code. The binary

code represents the position of the input and is used to identify the specific input that is active.

Encoders are commonly used in digital systems to convert a parallel set of inputs into a serial code. The

8 to 3 Encoder or octal to Binary encoder consists of 8 inputs: d7 to d0 and 3 outputs: a2, a1 & a0.

Each input line corresponds to each octal digit and three outputs generate corresponding binary code.

The figure below shows the logic symbol of octal to the binary encoder.

Figure 6.1 : Logical Diagram of 8:3 encoder

Truth Table:

INPUTS OUTPUTS

d7 d6 d5 d4 d3 d2 d1 d0 a(2) a(1) a(0)
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

VHDL Code:

Behavioral Modelling

27

library ieee;

use ieee.std_logic_1164.all;

entity encoder83 is

port(d: in std_logic_vector(7 downto 0);

 a: out std_logic_vector(2 downto 0));

end encoder83;

architecture behavioral of encoder83 is

begin

process(d)

begin case d is

when "00000001"=> a<="000"; when "00000010"=> a<="001";

when "00000100"=> a<="010"; when "00001000"=> a<="011";

when "00010000"=> a<="100"; when "00100000"=> a<="101";

when "01000000"=> a<="110"; when "10000000"=> a<="111";

when others=> a<="UUU"; end case; end process;

end behavioral;

Output:

RTL Schematic:

Results:VHDL codes of 8:3 encoder is simulated & synthesized

28

EXPERIMENT-7

Objective: To design and simulate decoder using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

A binary decoder is a combinational logic circuit that converts a binary integer value to an associated

pattern of output bits. They are used in a wide variety of applications, including data de- multiplexing,

seven segment display, and memory address decoding. Decoder is with multiple data inputs and

multiple outputs that convert every unique combination of data input states into a specific combination

of output states.

Example: Imagine you are a mall security guard. In your office is a very important and unique public

announcement (PA) phone. The phone has three dialing buttons (A, B, C) and is connected to eight

different speakers, as shown in Table 1. Consequently, you get to choose which section of the mall

hears your announcement based on the set of buttons you press. For example, if you press A and B and

start speaking into the phone (ABC = 110), the Food Court (D6) is the only place that can hear you.

However, if you press A and C (ABC = 101) then the Lady’s Room (D5) is the only place that can hear

you.

Such a public announcement phone (or PA system) is an example of a 3-to-8 decoder. Since the phone

has three buttons each of which can either be in one of two possible states — pressed (=1) or not

pressed (= 0) — then the phone can dial eight possible different numbers (23 = 2*2*2 = 8) as shown

below

A B C

MALL AREA

0 0 0 Security lunch room (D0)

0 0 1 Men's Room (D1)

0 1 0 Footwear Stores (D2)

0 1 1 Jewelry Dealers (D3)

1 0 0 Appliance Stores (D4)

29

1 0 1 Lady's Room (D5)

1 1 0 Food Court (D6)

1 1 1 Bookstores (D7)

Truth Table:

Boolean Expression

Y0

=

A’B’C’

Y1

=

A’B’C

Y2

=

A’BC’

Y3

=

A’BC

Y4

=

AB’C’

Y5

=

AB’C

Y6

=

ABC’

Y7

=

ABC

Application: The Decoders were used in analog to digital conversion in analog decoders, Used in

electronic circuits to convert instructions into CPU control signals, also used in logical circuits, data

transfer.

VHDL Code:

Behavioral Modelling

30

entity decoder is

Port (a : in STD_LOGIC_VECTOR(2 DOWNTO 0);

a1 : out STD_LOGIC_VECTOR(7 DOWNTO 0));

end decoder;

architecture Behavioral of decoder is

begin

process(a)

begin

case a is

when "000"=>a1<="10000000";

when "001"=>a1<="01000000";

when "010"=>a1<="00100000";

when "011"=>a1<="00010000";

when "100"=>a1<="00001000";

when "101"=>a1<="00000100";

when "110"=>a1<="00000010";

when "111"=>a1<="00000001";

when others=>null;

end case;

end process;

end Behavioral;

Output:

RTL Schematic:

31

Results:VHDL codes of 3:8 decoder is simulated & synthesized

Objective: To design and simulate parity generator using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

Parity evaluates whether the number of “1” bits in a binary code is odd or even. This provides a simple

means of error checking. There are two types of parity with opposite results.

“1” if there are an odd number of “1” bits in the original code, and “0” if there are an even number. The

even parity bit can be appended to the code to make the number of “1” bits even.

“0” if there are an odd number of “1” bits, and “1” if there are an even number. The odd parity bit can

be appended to the code to make the number of “1” bits odd.

Truth Table:

32

EXPERIMENT-8

To design and simulate parity generator using VHDL.

Software Requirement: XILINX 8.2 Software

Parity evaluates whether the number of “1” bits in a binary code is odd or even. This provides a simple

means of error checking. There are two types of parity with opposite results. Even parity res

“1” if there are an odd number of “1” bits in the original code, and “0” if there are an even number. The

even parity bit can be appended to the code to make the number of “1” bits even. Odd parity results in a

“1” bits, and “1” if there are an even number. The odd parity bit can

be appended to the code to make the number of “1” bits odd.

Parity evaluates whether the number of “1” bits in a binary code is odd or even. This provides a simple

Even parity results in a

“1” if there are an odd number of “1” bits in the original code, and “0” if there are an even number. The

Odd parity results in a

“1” bits, and “1” if there are an even number. The odd parity bit can

VHDL Code:

library ieee;

use ieee.std_logic_1164.all;

entity parity is

 port(data:in bit_vector(7

 even_p,odd_p: out bit);

end parity;

architecture parity_gen of parity is

signal temp : bit_vector(5 downto 0);

 begin

 temp(0)<=data(0) xor data(1);

 temp(1)<=temp(0) xor data(2);

 temp(2)<=temp(1) xor data(3);

 temp(3)<=temp(2) xor data(4);

 temp(4)<=temp(3) xor data(5);

 temp(5)<=temp(4) xor data(6);

 even_p <= temp(5) xor data(7);

 odd_p <= not(temp(5) xor data(7));

end parity_gen;

Output:

Results:VHDL codes of parity generator

33

use ieee.std_logic_1164.all;

port(data:in bit_vector(7 downto 0);

even_p,odd_p: out bit);

architecture parity_gen of parity is

signal temp : bit_vector(5 downto 0);

temp(0)<=data(0) xor data(1);

temp(1)<=temp(0) xor data(2);

temp(2)<=temp(1) xor data(3);

mp(3)<=temp(2) xor data(4);

temp(4)<=temp(3) xor data(5);

temp(5)<=temp(4) xor data(6);

even_p <= temp(5) xor data(7);

odd_p <= not(temp(5) xor data(7));

parity generator is simulated & synthesized.

34

EXPERIMENT-9

Objective: To design different types of flip flops using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

Flip Flop: Flip flop is used to store one single bit of the information. Since Flip Flop is a sequential

circuit so its input is based upon two parameters, one is the current input and other is the output from

previous state.It has two outputs, both are complement of each other. It may be in one of two stable

states, either 0 or 1.

SR Flip Flop: The SR flip flop is a 1-bit memory bistable device having two inputs, i.e., SET and

RESET. The SET input 'S' set the device or produce the output 1, and the RESET input 'R' reset the

device or produce the output 0. The SET and RESET inputs are labeled as S and R, respectively.

The SR flip flop stands for "Set-Reset" flip flop. The reset input is used to get back the flip flop to its

original state from the current state with an output 'Q'. This output depends on the set and reset

conditions, which is either at the logic level "0" or "1".

The NAND gate SR flip flop is a basic flip flop which provides feedback from both of its outputs back

to its opposing input. This circuit is used to store the single data bit in the memory circuit. So, the SR

flip flop has a total of three inputs, i.e., 'S' and 'R', and current output 'Q'. This output 'Q' is related to

the current history or state. The term "flip-flop" relates to the actual operation of the device, as it can be

"flipped" to a logic set state or "flopped" back to the opposing logic reset state.

Truth Table:

INPUTS OUTPUTS

S R Q Qb

0 0 Q Qb

35

0 1 0 1

1 0 1 0

1 1 X X

VHDL Code:

library ieee;

use ieee.std_logic_1164.all;

entity SR is

port(S,R,clk: in std_logic;Q:inout std_logic:='0';Qb:inout std_logic:='1');

end SR;

architecture ff of SR is

begin

process(S,R,clk)

variable t,tb: std_logic;

begin

t:=Q;

tb:=Qb;

if (clk='0'and clk'event) then if(S='0'and R='0') then t:=t;tb:=tb;

elsif(S='0'and R='1') then t:='0';tb:='1';

elsif(S='1'and R='0') then t:='1';tb:='0';

elsif(S='1'and R='1') then t:='U';tb:='U'; end if;

Q<=t;

Qb<=tb; end if;

end process; end ff;

Output:

RTL Schematic:

SR
FLIPFLOP

S

R

CLK

Q

Qb

36

JK Flip Flop: The JK flip flop (JK means Jack Kilby, a Texas instrument engineer, who invented it) is

the most versatile flip-flop, and the most commonly used flip flop. Like the RS flip-flop, it has two data

inputs, J and K, and an EN/clock pulse input (CP). Note that in the following circuit diagram NAND

gates are used instead of NOR gates. It has no undefined states, however. The fundamental difference

of this device is the feedback paths to the AND gates of the input, i.e. Q is AND-ed with K and CP and

Q’ with J and CP.

37

Truth Table:

INPUTS OUTPUTS

J K Q Qb

0 0 Q Qb

0 1 0 1

1 0 1 0

1 1

Q

Qb

VHDL Code:

library ieee;

use ieee.std_logic_1164.all;

entity JK is

port(J,K,clk: in std_logic;Q:inout std_logic:='0';Qb:inout std_logic:='1');

end JK;

architecture ff of JK is begin

process(J,K,clk) variable t,tb: std_logic; begin

t:=Q;

tb:=Qb;

if (clk='0'and clk'event) then if(J='0'and K='0') then t:=t;tb:=tb;

elsif(J='0'and K='1') then t:='0';tb:='1';

elsif(J='1'and K='0') then t:='1';tb:='0'; elsif(J='1'and K='1') then

t:=not t;tb:=not tb;

end if; end if; Q<=t;

Qb<=tb; end process; end ff;

Output:

RTL Schematic:

JK
FLIPFLOP

J

K

CLK

Q

Qb

38

D Flip Flop:

An RS flip-flop is rarely used in actual sequential logic because of its undefined outputs for inputs R=

S= 1. It can be modified to form a more useful circuit called D flip-flop, where D stands for data. The

D flip-flop has only a single data input D as shown in the circuit diagram. That data input is connected

to the S input of an RS flip-flop, while the inverse of D is connected to the R input. To allow the flip-

flop to be in a holding state, a D-flip flop has a second input called Enable, EN. The Enableinput is

AND-ed with the D-input.

• When EN=0, irrespective of D-input, the R = S = 0 and the state is held.

• When EN= 1, the S input of the RS flip-flop equals the D input and R is the inverse of D. Hence,

 output Q follows D, when EN= 1.

• When EN returns to 0, the most recent input D is ‘remembered'. The circuit operation is summarized

 in the characteristic table for EN=1.

39

D_FF

Truth Table:

VHDL Code:

library ieee;

use ieee.std_logic_1164.all; entity d_ff is

port(d,clk:in std_logic; Q:inout std_logic:='0';Qb:inout std_logic:='1’);

end d_ff;

architecture behaviour of d_ff is begin

process(d,clk) begin

if (clk='0' and clk'event)then q<=d;

qb<=not(d); end if;

end process; end behaviour;

Output:

RTL Schematic:

INPUTS OUTPUTS

D Q Qb

0 0 1

1 1 0

T Flip Flop:

The T flip-flop is a single input version of the JK flip

if both inputs are tied together.

Truth Table:

VHDL Code:

COMPONENT JK:-

library ieee;

40

is a single input version of the JK flip-flop. The T flip-flop is obtained from the JK type

INPUTS OUTPUTS

T Q Qb

0 Q Qb

1 Qb Q

obtained from the JK type

41

use ieee.std_logic_1164.all;

entity JK is

port(J,K,clk: in std_logic;Q:inout std_logic:='0';Qb:inout std_logic:='1');

end JK;

architecture ff of JK is begin

process(J,K,clk) variable t,tb: std_logic; begin

t:=Q;

tb:=Qb;

if (clk='0'and clk'event) then if(J='0'and K='0') then t:=t;tb:=tb;

elsif(J='0'and K='1') then t:='0';tb:='1';

elsif(J='1'and K='0') then t:='1';tb:='0'; elsif(J='1'and K='1') then

t:=not t;tb:=not tb; end if;

end if; Q<=t;

Qb<=tb; end process; end ff;

TOP MODULE:-

library ieee;

use ieee.std_logic_1164.all; entity T is

port(T,clk: in std_logic;Q:inout std_logic:='0';Qb:inout std_logic:='1');

end T;

architecture ff of T is component JK

port(J,K,clk: in std_logic;Q:inout std_logic:='0';Qb:inout std_logic:='1');

end component;

begin

X1: JK port map(T,T,clk,Q,Qb);

end ff;

Output:

RTL Schematic:

CLK

K

T FLIP
FLOP

J T

Q

Qb

42

Results:VHDL codes of different flip flops are simulated & synthesized.

43

EXPERIMENT-10

Objective: To design and different types of counters using VHDL.

Resources Required:

Hardware Requirement: Computer

Software Requirement: XILINX 8.2 Software

Theory:

A) Decade Counter: A binary coded decimal (BCD) is a serial digital counter that counts ten digits

.And it resets for every new clock input. As it can go through 10 unique combinations of output, it is

also called as “Decade counter”. A BCD counter can count 0000, 0001, 0010, 1000, 1001, 1010, 1011,

1110, 1111, 0000, and 0001 and so on.

A 4 bit binary counter will act as decade counter by skipping any six outputs out of the 16 (24) outputs.

There are some available ICs for decade counters which we can readily use in our circuit, like 74LS90.

It is an asynchronous decade counter

The above figure shows a decade counter constructed with JK flip flop. The J output and K outputs are

connected to logic 1. The clock input of every flip flop is connected to the output of next flip flop,

except the last one. The output of the NAND gate is connected in parallel to the clear input ‘CLR’ to all

the flip flops. This ripple counter can count up to 16 i.e. 24.

When the Decade counter is at REST, the count is equal to 0000. This is first stage of the counter cycle.

When we connect a clock signal input to the counter circuit, then the circuit will count the binary

sequence. The first clock pulse can make the circuit to count up to 9 (1001). The next clock pulse

advances to count 10 (1010).

Then the ports X1 and X3 will be high. As we know that for high inputs, the NAND gate output will be

low. The NAND gate output is connected to clear input, so it resets all the flip flop stages in decade

counter. This means the pulse after count 9 will again start the count from count 0.

44

Truth Table:

VHDL Code:

COMPONENT JK:-

library ieee;

use ieee.std_logic_1164.all; entity JK is

port(J,K,clk: in std_logic;Q:inout std_logic:='0';Qb:inout

std_logic:='1'); end JK;

architecture ff of JK is begin

process(J,K,clk) variable t,tb: std_logic; begin

t:=Q;

tb:=Qb;

if (clk='0'and clk'event) then if(J='0'and K='0') then t:=t;tb:=tb;

elsif(J='0'and K='1') then t:='0';tb:='1';

elsif(J='1'and K='0') then t:='1';tb:='0'; elsif(J='1'and K='1') then

t:=not t;tb:=not tb; end if;

end if; Q<=t;

Qb<=tb; end process;

end ff;

45

TOP MODULE:-

library ieee;

use ieee.std_logic_1164.all; entity dec_counter is

port(clock:in std_logic;z: inout std_logic_vector(3 downto

0):="0000"); end dec_counter;

architecture counter of dec_counter is component JK

port(J,K,clk: in std_logic;Q:inout std_logic:='0';Qb:inout

std_logic:='1'); end component;

component and2

port(a,b:in std_logic;c:out std_logic); end component;

signal s1,s2:std_logic; signal s:std_logic:='1'; begin

JK1: JK port map(s,s,clock,z(0),open); JK2: JK port

map(s2,s,z(0),z(1),open);

JK3: JK port map(s,s,z(1),z(2),open);

X1: and2 port map(z(2),z(1),s1);

JK4: JK port map(s1,s,z(0),z(3),s2); end counter;

Output:

RTL Schematic:

DEC_COUNTER

CLK

Z(3)

Z(2)

Z(1)

Z(0)

46

B) 3-Bit Updown Counter: The up/Down counter is also known as the bidirectional counter which is

used to count in any direction based on the condition of the input control pin. These are used in

different applications to count up from zero to provide a change within the output condition on

attaining a fixed value & others count down from a fixed value to zero to give an output condition

change. There are some types of counters like TTL 74LS190 & 75LS191 which can function in both up

& down count mode based on the condition of an input pin of up/down count mode.

Truth Table:

INPUT
PRESENT
STATE NEXT STATE

UP/ DOWN

q2 q1 q0 Q2 Q1 Q0

0 0 0 0 1 1 1
0 0 0 1 0 0 0

0 0 1 0 0 0 1
0 0 1 1 0 1 0

47

0 1 0 0 0 1 1

0 1 0 1 1 0 0
0 1 1 0 1 0 1
0 1 1 1 1 1 0

1 0 0 0 0 0 1
1 0 0 1 0 1 0
1 0 1 0 0 1 1

1 0 1 1 1 0 0
1 1 0 0 1 0 1
1 1 0 1 1 1 0

1 1 1 0 1 1 1
1 1 1 1 0 0 0

VHDL Code:

library ieee;

use ieee.std_logic_1164.all; use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all; entity bit3_udc is

port(clk,u:in std_logic;a: inout std_logic_vector(2 downto

0):="000"); end bit3_udc;

architecture beh of bit3_udc is begin

process(clk,a,u)

variable t: std_logic_vector(2 downto 0); begin

t:=a;

if clk='0' and clk'event then if u='1' then t:= t+"001"; elsif u='0'

then t:= t+"111"; end if;

end if; a<=t;

end process; end beh;

Output:

RTL Schematic:

48

Results:VHDL codes of different counters are simulated & synthesized.

UPDOWN

COUNTER

U

CLK

A(2)

A(1)

A(0)

