Mechanics Laboratory Manual (B. Sc. Physics II Sem)

Department of Pure \& Applied Physics

Guru Ghasidas Vishwavidyalaya

(A Central University)
Bilaspur-495009
Chhattisgarh, India

DEPARTMENT OF PURE \& APPLIED PHYSICS

B. Sc. Physics II Sem Mechanics Lab (Physics Minor)

List of Experiments

Experiment 1: To determine the length, height, or diameter of the given workpiece by using vernier caliper, screw guage, and travelling microscope.

Experiment 2: To determine the moment of inertia of a flywheel.

Experiment 3: To determine the modulus of rigidity of a wire by Maxwell's needle.

Experiment 4: To determine the elastic constants of a wire by Searle's method.

Experiment 5: To determine coefficients of viscosity of glycerin by Stoke's method.

EXPERIMENT-01

1.Aim - To determine the length, height, or diameter of the given workpiece by using Vernier Caliper, Screw Guage, and Travelling Microscope.
2. Appratus required - 1. Vernier Caliper,

2. Screw Guage

3. Travelling Microscope, Workpieces

For the measurement of length usually meter scales are used with accuracy up to millimeter. But for the measure length say $1 / 100$ th of the centimeter (c.m.) or $1 / 100^{\text {th }}$ of a millimeter, it is not possible to measure accurately using meter scale. Hence, the following instruments are used for more accuracy.

A.)VERNIER CALIPER

A.1. Description of the Vernier caliper.

A vernier caliper is defined as a measuring device that is used for the measurement of linear dimensions. It is also used for the measurement of diameters of round objects with the help of the measuring jaws. French mathematician Pierre Vernier invented the vernier scale in 1631. The main use of the vernier calliper over the main scale is to get an accurate and precise measurement. Vernier caliper has two scales- one main scale and a Vernier scale, which slides along the main scale. The main scale and Vernier scale are divided into small divisions though of different magnitudes.
1.The main scale is graduated in cm and mm. It has two fixed jaws, A and C, projected at right angles to the scale. The sliding Vernier scale has jaws (B, D) projecting at right angles to it and also the main scale and a metallic strip (N). The zero of main scale and Vernier scale coincide when the jaws are made to touch each other. The jaws and metallic strip are designed to measure the distance/ diameter of objects. Knob P is used to slide the vernier scale on the main scale. Screw S is used to fix the vernier scale at a desired position.
2.The least count of a common scale is 1 mm . It is difficult to further subdivide it to improve the least count of the scale. A vernier scale enables this to be achieved.

Fig. 1.1 Vernier Calliper
A.2. Principle (Theory) - The difference in the magnitude of one main scale division (M.S.D.) and one vernier scale division (V.S.D.) is called the least count of the instrument, as it is the smallest distance that can be measured using the instrument.
Formulas Used
(a) Least count of vernier calipers =

The magnitude of the smallest division on the main scale.
The total number of small divisions on the vernier scale.

A.3. Procedure

1.Keep the jaws of Vernier Calipers closed. Observe the zero mark of the main scale. It must perfectly coincide with that of the vernier scale. If this is not so, account for the zero error for all observations to be made while using the instrument.
2.Look for the division on the vernier scale that coincides with a division of main scale. Use a magnifying glass, if available and note the number of division on the Vernier scale that coincides with the one on the main scale.
3.Gently loosen the screw to release the movable jaw. Slide it enough to hold the sphere/cylindrical body gently (without any undue pressure) in between the lower jaws AB. The jaws should be perfectly perpendicular to the diameter of the body. Now, gently tighten the screw so as to clamp the instrument in this position to the body.
4.Carefully note the position of the zero mark of the vernier scale against the main scale. Usually, it will not perfectly coincide with any of the small divisions on the main scale. Record the main scale division just to the left of the zero mark of the vernier scale.
5.Start looking for exact coincidence of a vernier scale division with that of a main scale division in the vernier window from left end (zero) to the right. Note its number (say) N , carefully.
6.Multiply ' N ' by least count of the instrument and add the product to the main scale reading noted in step 4 . Ensure that the product is converted into proper units (usually cm) for addition to be valid.
7.Repeat steps 3-6 to obtain the diameter of the body at different positions on its curved surface. Take three sets of reading in each case.
8.Record the observations in the tabular form [Table E 1.1(a)] with proper units. Apply zero correction, if need be.
9.Find the arithmetic mean of the corrected readings of the diameter of the body. Express the results in suitable units with appropriate number of significant figures

A.4. Calculations and Observations.

(ii) Least Count Of Vernier Calipers (Vernier Constnt)

1 main scale division $(\mathrm{MSD})=1 \mathrm{~mm}=0.1 \mathrm{~cm}$
Number of vernier scale divisions, $\mathrm{N}=10$
Vernier constant $=\frac{1 \mathrm{MSD}}{\mathrm{N}}=\frac{1 \mathrm{~mm}}{10}$
Vernier constant $\left(\mathrm{V}_{\mathrm{C}}\right)=0.1 \mathrm{~mm}=0.01 \mathrm{~cm}$.
(ii). Zero error : It is defined as the condition in which the measuring device registers a reading when there should not be any reading. The zero error of the vernier caliper is calculated as:

$$
\text { Actual reading }=\text { Main scale }+ \text { Vernier scale }- \text { (Zero error })
$$

OBSERVATION TABLE - 01

Vernier constant $\left(\mathrm{V}_{\mathrm{C}}\right)=0.1 \mathrm{~mm}=0.01 \mathrm{~cm}$.

S.no	Main Scale reading, M $(\mathrm{cm} / \mathrm{mm})$	Number of coinciding vernier division, N	Vernier scale reading, V $=\mathrm{N} \times \mathrm{VC}(\mathrm{cm} / \mathrm{mm})$	Measured diameter, $\mathrm{M}+\mathrm{V}$ $(\mathrm{cm} / \mathrm{mm})$ (For spherical object.)
1				
2				
3				
4				

Dimension \{For rectangular workpiece\}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Main Scale reading, M ($\mathrm{cm} / \mathrm{mm}$)	Number of coinciding vernier division, N	Vernier scale reading, $\mathrm{V}=\mathrm{N} \times$ VC (cm/mm)	Measured demension, $\mathrm{M}+\mathrm{V}$ (cm/mm
Length					
Length					
Breadth					
Breadth					
Height					
Height					

Dimension \{For cylinderical workpiece\}	S. No	Main Scale reading, M $(\mathrm{cm} / \mathrm{mm})$	Number of coinciding vernier division, N	Vernier scale reading, $\mathrm{V}=\mathrm{N} \times \mathrm{VC}$ $(\mathrm{cm} / \mathrm{mm})$	Measured demension, $\mathrm{M}+$ $\mathrm{V}(\mathrm{cm} / \mathrm{mm}$

A.5. Result

(a) Diameter of the spherical/ cylindrical body, $\mathrm{D}=\ldots \times 10^{-2} \mathrm{~m}$.
(b) The dimension of the given rectangular block.

Length= \qquad $\times 10^{-2} \mathrm{~m} .$, Breadth $=$ \qquad $\times 10^{-2} \mathrm{~m} .$, Height $=$ \qquad $\times 10^{-2} \mathrm{~m}$.
. (c)The dimension of the given rectangular block.
Diameter= \qquad $\times 10^{-2} \mathrm{~m}$. , Depth $=$ \qquad $\times 10^{-2} \mathrm{~m} .$,

A.6. PRECAUTIONS

1.If the vernier scale is not sliding smoothly over the main scale, apply machine oil/grease.
2.Screw the vernier tightly without exerting undue pressure to avoid any damage to the threads of the screw.
3. Keep the eye directly over the division mark to avoid any error due to parallax.
4. Note down each observation with correct significant figures and units.

B.) Screw gauge

B.1. Description of the instrument.

Screw gauge is a mechanical tool that allows precise measurement of the diameter, radius, or thickness of a thin wire or a thin metal sheet. It is also known as a micrometer screw gauge. It includes two scales, a Pitch scale, and a Circular scale. Micrometer gauges are highly accurate for measurement in comparison to the Vernier Caliper Scale. Screw gauge measurement can be done using a Micrometer and an Inch Micrometer. A screw gauge is used for the precise measurement of a cylindrical or a spherical object. The screw gauge consists mainly of a U - shaped frame and a spindle (or a screw) attached to the thimble.

Fig. 1.2. Screw Gauge

2. Principle

The linear distance moved by the screw is directly proportional to the rotation given to it. The linear distance moved by the screw when it is rotated by one division of the circular scale, is the least distance that can be measured accurately by the instrument. It is called the least count of the instrument.

3. Procedure

1. Take the screw gauge and make sure that the rachet R on the head of the screw functions properly.
2.Rotate the screw through, say, ten complete rotations and observe the distance through which it has receded. This distance is the reading on the linear scale marked by the edge of the circular scale. Then, find the pitch of the screw, i.e., the distance moved by the screw in one complete rotation. If there are n divisions on the circular scale, then distance moved by the screw when it is rotated through one division on the circular scale is called the least count of the screw gauge.
3.Insert the given wire between the screw and the stud of the screw gauge. Move the screw forward by rotating the rachet till the wire is gently gripped between the screw and the stud. Stop rotating the rachet the moment you hear a click sound.
4.Take the readings on the linear scale and the circular scale and obtain the diameter of the wire.
5.The wire may not have an exactly circular cross-section. Therefore. it is necessary to measure the diameter of the wire for two positions at right angles to each other and it is also necessary to measure the diameter at several different places and obtain the average value of diameter as the wire may not be truly cylindrical.
6.Take the mean of the different values of diameter so obtained and subtract zero error, if any, with proper sign to get the corrected value for the diameter of the wire.

B.4. Calculation and observations

(i) Least count of Vernier Calipers (Vernier Constant)

As the number of divisions on main scale are 10 to a centimeter, so the smallest division on main scale will be 1 mm and it will be the pitch (p) of the screw gauge. The number of circular divisions is $\mathrm{n}=100$.

The least count of a screw gauge is L.C. =
pitch
No. of divisions on the circular scale
$=1 \mathrm{~mm} / 100$
$=0.01 \mathrm{~m} . \mathrm{m} .=(0.01 / 10) \mathrm{cm}=0.001 \mathrm{~cm}=10^{-3} \mathrm{~cm}$.

OBSERVATION TABLE - 02

The least count of a screw gauge is L.C. $=0.01 \mathrm{~m} . \mathrm{m} .=(0.01 / 10) \mathrm{cm}=0.001 \mathrm{~cm}$ $=10^{-3} \mathrm{~cm}$.

1. Reading along one direction.

S.no	Linear scale reading $M(\mathrm{~mm})$	Circular scale reading (n)	Diameter d1 $=\mathrm{M}+\mathrm{n} \times$ L.C. (mm)

2.Reading along perpendicular direction.

S.no	Linear scale reading $M(\mathrm{~mm})$	Circular scale reading (n)	Diameter d1 $=\mathrm{M}+\mathrm{n} \times \mathrm{L} . \mathrm{C} .(\mathrm{mm})$

5. Result

The diameter of the given wire as measured by screw gauge is ... mm .

6. Precautions

1.Rachet arrangement in screw gauge must be utilised to avoid undue pressure on the wire as this may change the diameter.
2. Move the screw in one direction else the screw may develop "play".
3. Screw should move freely without friction.
4.Reading should be taken atleast at four different points along the length of the wire.

C.) Travelling Microscope

C.1.Description of the instrument.

It is a compound microscope attached to a graduated vertical pillar, which is mounted on rigid platform (Fig. 1). The platform is provided with three leveling screws. The microscope can be set with its axis either in the vertical or the horizontal position. The microscope can be moved in the vertical or horizontal direction by means of a screw arrangement attached to it. The distance through which the microscope is moved is read on the scale. There are two scales one for horizontal movement and the other for the vertical movement. Each scale has a main scale (M1, M2) and a vernier scale (V1, V2). The vernier moves with the microscope. As in the spectrometer, there is a set of main screw and fine adjustment screw, for the horizontal and the vertical movements. One set is fixed to the pillar for vertical movement and the other set is fixed to the platform for horizontal movement. The eyepiece of the microscope is provided with cross-wires. The image of an object is focused by the microscope using a side screw (focusing screw) attached to the microscope

Fig.1.3. Traveling microscope

C.2. Procedure

1. When the microscope is clamped by the main screw or fine adjustment screw at any position, the reading is taken in the vertical scale or in the horizontal scale according to the requirement.
2.The Image of the object can be focused by adjusting the side screw attached to the microscope.
3.The cross wire mark on the eyepiece of microscope must be arranged in such a way that it may come in between the first line.
4.The readings of main and vernier scale must be measured and added and also same steps are repeated for the second line .
2. The Depth is counted by subtracting reading of first line and second line.

C.3. Calculation and observations

1 main scale division $(\mathrm{MSD})=0.05 \mathrm{~cm}$
Number of vernier scale divisions, $\mathrm{N}=50$
Least count of traveling microscope $=0.05 \mathrm{~cm} / 50=0.001 \mathrm{~cm}$

OBSERVATION TABLE - 03

Least count of traveling microscope $=0.001 \mathrm{~cm}$

S.no	Main Scale reading, M (cm)	Number of coinciding vernier division, N	Vernier scale reading, $\mathrm{V}=$ $\mathrm{N} \times \mathrm{VC}(\mathrm{cm})$	Measured diameter, $\mathrm{M}+\mathrm{V}$ (cm) (For circular object.)
1				
2				
3				
4				

C.4.Result:

The parts and functions of the travelling microscope are studied and a few readings are taken.

Experiment no. 02

Aim: To determine the moment of inertia of a flywheel.
Apparatus required: The flywheel, slotted weight, strong thread,meterscale,verniercaliper,sandbed,stopwatch.

Theory: Flywheel is a heavy metallic wheel with long axle which when properly supported in wearing may remain in rest in any position. i.e is it Centre of gravity lies on the excess of rotation. Its moment of inertia can be determined experimentaly by setting in rotational motion with non amount of energy. The flywheel is mounted with its access horizontal and at a suitable height from ground a string careers suitable mass at its one end and having a length less than the height of the axle from the ground is graft completely and evenly around the axle.

Momentof inertiais definedastheproductofmassandradius of gyration (square). it is a tensor of rank 1 having SI unit of KG meterswith dimension formula MLs it depends on mass and its distribution about its axis of rotation. it is a addictive in nature whatever it is the role of mass in linear motion, same in the role ofmovementof inertiainrotationalmotion.

In the experiment of flywheel, whenmass is released, the string unwind itself does set rotational motion in the wheel. The result mass descends further and the axle of rotation of the wheel goes on increasing til it become maximum then the string leaves the excel and the mass drops off. potential energy of the hanging weight changes into its kinetic energy and this kinetic energy act as a talk for rotation of axis of fly wheel.

Let h be the height folowed by the mass before the string leaves the axle and the mass drop of and let v be the linear velocity of the mass and wbethe angular velocity of the wheel it instant
massis droppedwhenmassthesenseadistanceh. it lose it loses potentialenergymghwhichis usedasfollow:

1. Partlyandprovidingkinetic energyoftranslationmvs/2.
2.Partialyinprovidingkineticenergyofrotationlws/2tothefly wheelwherelisthemomentof inertiaofflywheelaboutaxle.
2. Partiallydoingworkagainstthefriction.

If the work done against the friction is F per rotation and if the number of rotations made by the wheel till the mass detaches itselfis equal to n_{1} the work done against the friction is equal to n_{1} Fhandsbyprincipalofconservationofenergywehave:

$$
\begin{equation*}
\mathrm{mgh}=\mathrm{mvs} / 2+\mathrm{lws} / 2+\mathrm{n}_{1} \mathrm{~F} \tag{1}
\end{equation*}
$$

After the mass the detached, the fly wheel continues to rotate for a considerable time t before it come to the rest by the fraction. If it makes and $n_{2} F$ before it comes to rest then the work done against the friction is $\mathrm{n}_{2} \mathrm{~F}$ and evidently equal to the kinetic energy of the fly wil it the instance mass is dropped off.Thus,

$$
\begin{aligned}
& \mathrm{n}_{2} \mathrm{~F}=\mathrm{lws} / 2 \\
& \mathrm{~F}=\mathrm{Iws} / 2 \mathrm{n}_{2}
\end{aligned}
$$

Orsubstitutingthevalueoffineq.(1)weget,

$$
\begin{align*}
& \quad \text { Mgh }=m s / 2+\operatorname{lws} / 2+\left(1+n_{1} / n_{2}\right) \\
& \text { Or. } \quad I=(2 m g h-m v s) /\left(w\left(1+n_{1} / n_{2}\right)\right) . \tag{2}\\
& \text { If } r \text { is radiusoftheflywheel, } v=r w \\
& \quad \#(2 m g h-m r s w s) /\left[w s\left(1+n_{1} / n_{2}\right)\right] \\
& \quad I=m((2 g h / w s)-r s) /\left(1+n_{1} / n_{2}\right) \ldots \ldots \tag{3}
\end{align*}
$$

After the mass has detected, its angular velocity decreases on account of friction and after sometime t, the fly wheel come to rest if at the time of detachment of the mass angular velocity of the fly whee is wwhich become zero after rest. Hence if the force of friction is steady, the motion of the fly wheel is uniformly retarded and the average angular velocity during this interval is equaltow/2.Thus,

$$
\begin{aligned}
& w / 2=2 \pi n_{2} / t \\
& w=4 \pi n_{2} / t
\end{aligned}
$$

Thenobservingthetimetandcountingthenumberofrotationsn ${ }_{1}$ andn n_{2} madebythe wheel itsmoment ofinertiacanbecalculated.

Procedure:

I Tale a string of length less than the height from the floor make a loop it its one and tie a suitable mass at the other end slip on the loop to the smal peg projecting on the axle of wheel.
I. Sometimesinsteadofpegthere is a wholeonthe axelin whichabrass pain canbefitted which serve the purpose of peg. T facilitatecounting of rotationsontherim of the wheelofareferencemarkismadeonarim.oppositetothe horizontalpointerfixedtothestructureonwhichthefly wheel is mounted.
II. Let the mass be released. Count the number of rotations n_{1} the fly wheel makes before the loop come of the peg and the mass drops off. The numbern n_{1} must be equal to the number of turns of thread around the axle. carefuly start the stopwatch at the moment mass is detached and also continues to count the number of rotation n_{2} the flywheel make before it comes to rest. stop the stopwatch when thefly will cometo rest.
IV. Measurebymeterscalethelengthofthestringbetweenthe loopandthemarkit theotherendwhichgivesh. distance descended by the mass. With the help of the vernier caliper measurethediameterof theaxeloftheflywheel.
V. Repeat the experiment with different mass and string of different length and take at least three sets of reading and in each case for the same value of mass and height, take at least three set of observation, for n_{1}, n_{3} and t. if these values differ slightly for the same values of m and h calculate their mean. Cal cul at e the moment of inertia of thefly wheel for eachsetof observation separately and then find out the mean value of moment of inertia.

Observation:
Measurements of $h, \mathrm{n}_{1}, \mathrm{n}_{2}$ andtLeast
count ofStop watch= sec
Table1: Measurementsofh, $\mathrm{n}_{1}, \mathrm{n}_{2}$ andt (fixed the valueof massmandvarytheheighthfromthefromwhich mass will bereleased).

S n o	m						
(gm)	g	$\mathrm{cm})$	n_{1}	n_{2}	t	l^{\prime}	l^{\prime}
				(sec)		$(\mathrm{A}$	
							$\mathrm{v})$

Table 2 :Measurement of $\mathrm{h}, \mathrm{n}_{1}, \mathrm{n}_{2}$ and timet(fixed the valueofheighthandvarymassmtobereleased).

S	m	$\mathrm{h}(\mathrm{cm})$	n_{1}	n_{2}	$\mathrm{t}(\mathrm{sec})$	$\mathrm{I}^{\prime \prime}$	$\mathrm{P}^{\prime \prime}$
n	(gm)						
o.							(Av)

Table3:Measurementofdiameteroftheaxle.

Sno.	Reading along Tot any a diameter		Reading along any perpendic ular diameter			$(a+b) / 2$
	Main Vernier		Main	Vernier		

Calculation:

Meancorrected radius of the axel=.......cm

$$
\begin{aligned}
& \mathrm{w}=4 \pi \mathrm{n}_{2} / \mathrm{tsec} \\
& \mathrm{I}^{\prime}=\mathrm{m}((2 \mathrm{gh} / \mathrm{ws})-\mathrm{rs}) /\left(1+\mathrm{n}_{1} / \mathrm{n}_{2}\right)=\ldots \mathrm{kg} \mathrm{~ms} \\
& \mathrm{I}^{\prime \prime}=\mathrm{m}((2 \mathrm{gh} / \mathrm{ws})-\mathrm{rs}) /\left(1+\mathrm{n}_{1} / \mathrm{n}_{2}\right)=\ldots \mathrm{kg} \mathrm{~ms} \\
& \mathrm{I}=\left(\mathrm{I}^{\prime}+\mathrm{I}^{\prime \prime}\right) / 2
\end{aligned}
$$

Result:

The momentofinertiaof theflywheelaboutitsaxisofrotation is=..................Kg ms

Precautions:

1.Ballbearingshouldbeproperlylubricated.
2.Axleoftheflywheelshouldbehorizontal.
3.Massshouldnotbeoscillatingwhileitisfallingdown.
4. Massshouldlandinthesandbedonly.
5. Numberofrotationsofthewheelshouldbeproperlycounted.

EXPERIMENT - 3

AIM: To determine rigidity modulus of the material of a wire by using Maxwell's needle (Dynamic method).

APPARATUS REQUIRED: (1) Maxwell needle,
(2) Stop watch,
(3) Screw gauge,
(4) Lamp and scale arrangement,
(5) Balance and weight box or telescope,
(6) Clamp with stand.

DESCRIPTION: A Maxwell's needle consists of a brass tube AB (Fig. 16) fitted symmetrically into another short brass tube E to which is attached centrally a stout wire D carrying a small mirror M . The system is suspended by a wire R of the material under test, the upper end of W being rigidly fixed. Two similar hollow (H and H) and two similar solid (S and S) metal cylinders of equal length and diameter can fit into the tube $A B$ and fill it up completely when put end to end. Thus, the length of each piece is $1 / 4^{\text {th }}$ of $A B$.

THEORY: The experiment consists in arranging the solid pieces (S, S) in the inner positions and the hollow ones (H, H) in outer positions as shown in Fig. 16(a) and determining the time period T_{1} of the torsional oscillations in the usual way.

The next step is to interchange the positions of solid and hollow cylinders as shown in Fig. 16(b) and the time period of torsional oscillation T_{2} is determined again.

We have,

$$
\eta=\frac{32 \pi \mathrm{La}^{2}(\mathrm{M}-\mathrm{m})}{\mathrm{r}^{4}\left(\mathrm{~T}_{2}^{2}-\mathrm{T}_{1}^{2}\right)}
$$

where, $\quad \mathrm{M}$ is the mass of each solid piece m is the mass of each hollow piece, a is the length of each piece (i.e $A B / 4$)
L is the length of the wire W and r is the radius of the wire W

PROCEDURE: Suspend the Maxwell's needle from a clamp. If a lamp and scale arrangement is not available, a telescope can be used. Put a chalk mark at the middle and focus the mark by telescope coinciding with vertical cross wire.

Arrange the inner cylinders with solid cylinders in side and hollow cylinders at the ends. Note the time for 20 oscillations. Repeat it three times and calculate mean T_{1}. Interchange the positions of the cylinders, taking solid ones to the ends and hollow ones to the middle. Note the time for oscillation for 20 oscillations. Repeat it three times and calculate mean T_{2}.

Measure the mass of each solid cylinder. Calculate its mean, M. Measure the mass of each hollow cylinder. Take its mean, m.

Measure the radius, r of the wire W by screw gauge. Measure the length AB by scale, $1 / 4^{\text {th }}$ of it is a . Measure the length L , of the wire W by a scale.

OBSERVATIONS:

Mass of solid cylinder, $\frac{\mathrm{M}_{1}+\mathrm{M}_{2}}{2}=\mathrm{M}=\ldots \ldots \mathrm{gm}$.
Mass of hollow cylinder $\frac{\mathrm{m}_{1}+\mathrm{m} 2}{2}=m=\ldots \ldots \ldots \mathrm{gm}$.
Length of the wire $\mathrm{W}, \mathrm{L}=$ \qquad cm.

Radius of the wire W, $r=$ \qquad .cm.

Length of each cylinder, $A B / 4=a=$ cm.

TABLE-1

Observation for radius of wire \mathbf{W} by screw gauge

Least count of screw gauge (LC) = \qquad .cm

S.NO.	MSR (cm)	CSD	CSD×LC	Total (cm) MSR+CSD×LC	Mean (cm)
1.					
2.					
3.					
4.					
5.					

Diameter of wire $=$ \qquad cm.

Radius of wire $=\frac{\text { Diameter }}{2}=$ cm.

TABLE-2

Calculation of time period

Condition of cylinders	Time for 20 oscillations in sec				Time Period (sec)
	t_{1}	t_{2}	t_{3}	Mean	
Hollow cylinders at the ends					
Solid cylinders at the ends					T2 =......................sec

CALCULATION:

$$
\begin{aligned}
& \eta=\frac{32 \pi \mathrm{La}^{2}(\mathrm{M}-\mathrm{m})}{\mathrm{r}^{4}\left(\mathrm{~T}^{2}-\mathrm{T}_{2}^{2}\right)} \\
& \eta=\frac{32 \times 3.14 \times 0.235 \times(0.1125)^{2} \times(0.280-0.026)}{\left(10^{-3}\right)^{4} \times\left((62.66)^{2}-(38)^{2}\right)} \\
& \eta=3.058 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

RESULT: The modulus of rigidity of wire is $3.058 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$.

PRECAUTION:

(1) As the fourth power of r enters into calculation, measure it carefully.
(2) Limit the amplitude of oscillation to 4°. The reference mark should always remain in the field of view of the telescope.
(3) See that there is no linear oscillation and only torsional oscillation is present when time period is noted.
(4) Avoid fan or wind at the place of observation.

Experiment - 4

1: Aim:

To determine Young's modulus, Modulus of rigidity, and Poisson's ratio of the material of given wire by Searl's dynamical method.

2: Apparatus required:

Two identical bars, given wire, stop watch, screw gauge, slide calipers, balance, candle, and the match box.

3: Description of the apparatus:

Two identical rods AB and CD of square cross section connected together at their mid points by the specimen wire are suspended by two silk fibers from a rigid support such that the plane passing through these rods and the wire is horizontal as shown.

4: Theory:

Young's modulus (Y) is defined as the ratio of linear stress to the linear strain, while Poisson's ratio (σ) represents ratio of the lateral strain to the longitudinal strain. Bulk modulus (K) is known as the ratio of the normal stress to the volume strain. Relation among Y, σ and K is $\mathrm{Y}=3 \mathrm{~K}(1-2 \sigma)$. Modulus of rigidity (η) is defined as the ratio of shearing stress to the shearing strain. And the relation among η, Y and σ is $\mathrm{Y}=2 \eta(1+\sigma)$. Two equal inertia bars AB and CD of square section are joined together at their centers by a short and moderately thin wire GG^{\prime} of the material whose elastic coefficient is to be determined, and the system is suspended by two parallel torsion less threads, so that in the equilibrium position the bars are parallel to each other with plane A BC D horizontal If the two bars be centered through angles in opposite directions and be then set free, the bars will execute flexural vibrations in horizontal plane with same time period about their supporting threads.

(a)

(b)

Experiment-4

Fig 1 Experimental setup of Searl's Method

When the amplitude of vibration is small, the wire is only slightly bent and distance GG' between the ends of the wire measured along the straight line will never differ perceptibly from the length of the wire so that the distance between the lower ends of the supporting threads remains practically constant and hence the thread remains vertical during the oscillation of the bars, and there is no horizontal component of tension in the thread acting on the wire.

The mass of the wire is negligible as compared with that of wire so that motion of G and G^{\prime} at right angles to GG^{\prime} may be neglected. Further, since the horizontal displacement of G and G^{\prime} are very small compared with the length of the supporting threads, the vertical motion of G and G^{\prime} may be neglected. The center of gravity of the bars, therefore at rest and hence the section of the wire on either bars and vice Versa is simply a couple which by symmetry must be the vertical axis. The moment of this couple called the "bending moment" is same at every point of the wire and thus the neutral filament if the wire is bent into n circular arc.

If the radius of the arc, Y the Young's modulus for the material of the wire, and 1 the geometrical moment of inertia of the cross section of the wire about an axis through the centroid of the area and perpendicular to the plane of bending, the bending moment is given the equation $\mathrm{G}=\mathrm{YI} / \mathrm{p}$. If L is the length of the wire and θ be the angle turned through either bar. $p=\mathrm{L} / 20$ and $G=2 \mathrm{YI} \theta / \mathrm{L}$; and if $\mathrm{d}^{2} \theta / \mathrm{dt}^{2}$ is the angular acceleration of each bar towards the equilibrium position and K the moment of inertia of the bar about a vertical axis passing

Experiment - 4

through its C.G., the torque due to inertial reaction is $\mathrm{K} d 0 / \mathrm{dP}$. Hence equating the sum of these torques to zero, we get from Newton's third law, the equation

$$
\mathrm{K} \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} t^{2}}+2 \mathrm{YI} \theta / \mathrm{L}=0
$$

Therefore, assuming the motion of the bars as S.H. M., the time period of the flexural vibrations is given by

$$
\begin{gather*}
\mathrm{T}_{1}=2 \pi \sqrt{\frac{\mathrm{KL}}{2 \mathrm{FI}}} \\
\mathrm{Y}=\frac{2 \pi^{2} K L}{T_{1}^{2} I} \quad \ldots \ldots \ldots \ldots \ldots \ldots(1) \tag{1}\\
\text { Where } \mathrm{I}=\frac{1}{4} \pi \mathrm{r}^{2} \quad \text { and } \quad \mathrm{K}=\mathrm{M}\left(\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{12}\right)
\end{gather*}
$$

Where $M=$ Mass of the bar, $a=$ length of the bar, and $b=$ breadth of the bar.
Putting the value of I in equation (1), we have

$$
\begin{equation*}
\mathrm{Y}=\frac{8 \pi K L}{T_{1}^{2} r^{4}} \tag{2}
\end{equation*}
$$

Now the suspensions of the bars are removed and one bar is fixed horizontally on a suitable support, while the other is suspended from given wire. If the wire is twisted through an angle and the bar is allowed to execute torsional oscillations, the time period of oscillations is given by

$$
\mathrm{T}_{2}=2 \pi \sqrt{\underline{\mathrm{~K}}}_{\mathrm{C}}^{-} .
$$

where $C=\frac{\eta \pi r^{4}}{2 L}$. and $\eta=$ modulus of rigidity of the material of wire.

Experiment - 4

$$
\begin{equation*}
\eta=\frac{8 \pi K L}{T_{2}^{2} r^{4}} \tag{3}
\end{equation*}
$$

from equation (2) and (3),

$$
\frac{T_{2}^{2}}{T_{1}^{2}}
$$

Now, $Y=2 \eta(1+\sigma)$ where $\sigma=$ Poisson's ratio. Hence

$$
\sigma=\frac{\mathrm{T}_{2}^{2}}{2 \mathrm{~T}_{1}^{2}}-1
$$

5: Observation table:

Table 1
Calculation of time period T_{1} for oscillation in horizontal plane.

s.no	Time for 10 oscillations(sec)	Time for 1 oscillation	Average($\left.\mathrm{T}_{1}\right)$

Table 2

Calculation of the time period T_{2} for oscillation in vertical plane.

s.no	Time for 10 oscillations(sec)	Time for 1 oscillation	Average(T_{2})

Experiment-4

Table 3
Calculation for the breadth of the given bar
Mass of either rod $=$
Length of the either bar =
Least count of slide calipers $=$
Least count of slide calipers =

s.no	Main scale(cm)	Vernier scale (mm)	Total(cm)	Mean(cm)

Table 4
Calculation for the diameter of the given wire
Least count of screw gauge $=$

Error of the screw gauge =

s.no	Main scale(cm)	Screw gauge(mm)	Total(cm)	Mean(cm)

6: Calculation:

$$
\begin{gathered}
\mathrm{I}=\mathrm{M}\left(\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{12}\right) \ldots ~ K G ~ / ~ \\
\mathrm{Y}=\frac{8 \pi K L}{T_{1}^{2} r^{4}} \quad \ldots \ldots \ldots \ldots \ldots \mathrm{N} / \mathrm{m}^{2}
\end{gathered}
$$

Experiment-4

$$
\begin{aligned}
& \eta=\frac{8 \pi K}{T_{2}^{2} r^{4}} \\
& \sigma=\frac{T_{2}^{2}}{2 T_{1}^{2}}-1 \quad \ldots \ldots \ldots \ldots \ldots . . .
\end{aligned}
$$

7: Results:

The values of elastic constants for the material of the wire are $Y=$ \qquad $\mathrm{N} / \mathrm{m}^{2}$. With percentage error. \qquad
$\eta=$ \qquad $\mathrm{N} / \mathrm{m}^{2}$. with percentage error.
$\sigma=$ \qquad With percentage error=

8: Precautions:

1. The amplitude of oscillation should be small.
2. Bars should oscillate in a horizontal plane.
3. Two bars should be identical.
4. Length of the two threads should be the same.
5. The radius of wire should be measured very accurately.

Experiment -5

Aim: To determine coefficient of viscosity of given liquid (glycerine) by using Stokes law.

Introduction: This laboratory investigation involves determining the viscosity of glycerine using Stokes'Law. Viscosity is a fluid propertythatprovides an indication of the resistance to shear withina fluid.Specifically, a fluid column will be used as a viscometer. Time taken by the steel ball to travel a distance in the fluid will be measured using the IntelligentTimer.

Apparatus Required-

I. Ajarofglycerine
II. Balls of differentradii
III. Screw gauge
IV. Stop watch
v. MeterScale

Theory:

George Gabriel Stokes, an Irish-born mathematician, worked most of his professional life describing fluid properties. Perhaps his most significant accomplishment was the work describing the motion of a sphere in a viscous fluid. This work lead to the development of Stokes' Law, a mathematical description of the force required to move a sphere through quiescent, viscous fluid at specific velocity.

A body moving in a fluid is acted upon by a frictional force in the opposite direction to its direction of travel. The magnitude of this force depends on the geometry of the body, velocity of the body, and the internal friction of the fluid. A measure for the internal friction is given by the dynamic viscosity η. For a sphere of radius r moving at velocity v in an infinitely extended fluid of dynamic viscosity η, the frictional force according to Stokes' law is given as:

$$
\begin{equation*}
\mathrm{F} 1=6 . \pi . \eta . \mathrm{r} \cdot \mathrm{v} \tag{1}
\end{equation*}
$$

If the sphere is allowed to fall vertically in the fluid, after a time, it will move at a constant velocity v , and all the forces which are acting on the sphere will be in equilibrium: the

$$
\begin{gather*}
F_{2}=\frac{4 \pi r^{3} \rho_{1} g}{3} \tag{2}\\
F_{3}=\frac{4 \pi r^{3} \rho_{2} g}{3} \tag{3}
\end{gather*}
$$

Where, ρ_{1} is the density of the fluid ρ_{2} is the density of the sphere g is the acceleration due to gravity
frictional force F1 which acts upwards, the buoyancy force F2 which also acts upwards and the downward acting gravitational force F3, shown in free body diagram. The latter two forces are given by:

And theequilibriumbetweenthesethreeforces can be described by:

$$
\begin{equation*}
F 1+F 2=F 3 \tag{4}
\end{equation*}
$$

The viscosity can, therefore, be determined by measuring the rate of fall v :

$$
\begin{equation*}
\eta=\frac{2}{9} \cdot r^{2} \cdot \frac{\left(\rho_{2}-\rho_{1}\right) \cdot g}{v} \tag{5}
\end{equation*}
$$

Where, v can be determined by measuring the fall time t over a given distance s. The equation 5 can be written as

$$
\begin{equation*}
\eta=\frac{2}{9} \cdot r^{2} \cdot \frac{\left(\rho_{2}-\rho_{1}\right) \cdot g \cdot t}{s} \tag{6}
\end{equation*}
$$

EXPERIMENTAL SET UP OF MEASURING VISCOSHTY BY STOOKE'S METHOD

In practice, equation 1 has to be corrected since the assumption that the fluid extends infinitely in all directions is unrealistic and the velocity distribution of the fluid particles relative to the surface of the sphere is affected by the finite dimensions of the fluid. For a sphere moving along the axis of a cylinder offluidofradius R , thefrictionalforceis:

$$
\begin{align*}
& F_{1}=6 \pi \eta v r\left(1+2 \cdot 4 \cdot \frac{r}{R}\right) \tag{7}\\
& \eta=\frac{2}{9} \cdot r^{2} \cdot \frac{\left(\rho_{2}-\rho_{1}\right) \cdot g \cdot t}{s} \cdot \frac{1}{\left(1+2.4 \cdot \frac{r}{R}\right)} \tag{8}
\end{align*}
$$

If the finite length L of the fluid cylinder is taken into account, a further correction of the order r / L is necessary.
$\eta=\frac{2}{9} \cdot r^{2} \cdot \frac{\left(\rho_{2}-\rho_{1}\right) \cdot g \cdot t}{s} \cdot \frac{1}{\left(1+2.4 \cdot \frac{r}{R}\right)\left(1+3.3 \frac{\mathrm{r}}{\mathrm{L}}\right)}$

Procedure

Setup

1.Clamp the stand rod on the ' A ' shaped Base and then clamp the Glass tube using Boss head and Universal finger clamp such that the tube is held vertical. Level the apparatus with the help of levelling screws ofthe 'A'shaped Base.
2.Clamp the Electromagnet assembly on the stand rod using Bosshead such that the core of the electromagnetlies alongtheaxis ofthetube.
3. Fill the glass tube with glycerine such thatabout 2 cm of the tube is empty.

4. Connect the electromagnet to the 4 mm sockets provided on the Intelligent Timer(Marked as solenoid)usingflexibleplugleads and switch on the electromagnet.
5. Hold the steel ball with the electromagnet and make a trial to ensure that when the Start Switch is pressed the electromagnet release the ball immediately, if it doesn't then turn the iron core a bit upward.

Fig:ExperimentalSetup
6.Position the holding magnet with the steel ball above the fluid column in a way that the steel ball is on concentres withthecylinderaxis and completely dipped in.
7.Mark theposition of thesteel ball on the tube itself and from thatposition, mark another position at 80 cm (say).
8.Press the Start/Stopswitch to releasetheballand againpress theStart/Stopswitchwhen the ball reaches the marked position.
9. Note down the time.
10.Using three ferrite magnet combination return the steel ball to the electromagnet as shown in theadjacent figure.
11.Repeat the experimentseveraltimes and takeout themean value to find out thespeed and hence, thecoefficient of viscosity forglycerine at thattemperature.

Observations:

$\rho 1=1260$ kgm-3 Density of Glycerine
$\rho 2=7790$ kgm-3 Density of Iron Bal

Distance between two marks AB h (cm)	Radius of the ball $\mathrm{r}(\mathrm{cm})$	$\mathrm{r}^{\wedge} 2$	Time taken by the ball distance AB t (s)	Terminal velocity of the ball v=h/t $(\mathrm{Cm} / \mathrm{s})$

Calculation -

Result -

The coefficient of viscosity of glycerin is deduced to be \qquad dynes/cm^2

Precautions-

I) The ball bearing should be small size in order.
II) Theballbearingshould be properlywettedin theexperimentliquid \{glycerine\}.
III) Theballshould be fallcentrallyinto theexperimentalliquid.
IV) Theradius ofthe ballmustbe measured twice and accurately.

