EXPERIMENT NO. 7

Objective: To find the power factor and circuit constant in R-L-C series circuit.

Apparatus Required:

Sr.	Apparatus	Quantity	Range/ Remark				
No.							
1	Single phase AC supply	1	() V				
2	Variac (i/p-230V,o/p-0-270V,15A)	1					
3	AC Voltmeter	4	()V, ()V, ()V				
4	AC Ammeter	1	()A				
5	wattmeter	1	()W,V,A				
6	Rheostat	1	Ω				
7	capacitor	1					
8	inductor	1					
9	Connecting wires		-				

Circuit Diagram:

Fig 1 – R-L-C Series Circuit

Observation Table:

S. N.	Observed value							Calculated value			9	L	C	
	V (v)	I (A)	V _R (v)	V _L (v)	V _c (v)	P (Watt)	R (V _R /I)	X _L V _L /I	X _c V _C /I	Cose = P/VI	$Z=$ $\frac{V}{I}$			
		7.5		2		2		12 5		5			75	
,		32						.5		,			30	S

Theory:

A series R-L-C circuit is shown in Fig.1 from KVL

$$V = V_R + V_L + V_C$$

$$V = IR + I(jwL) + I(\frac{1}{jwc})$$

$$V = I[R + j(wL - \frac{1}{wc})]$$

$$V = IZ, \text{ where } Z = \text{impedance}$$

$$Z = [R + j(wL - \frac{1}{wc})]$$

$$\Theta = \tan^{-1}[(wL - \frac{1}{wC})/R]$$

Power factor
$$\cos(\theta) = \frac{P}{VI}$$
, $R = \frac{VR}{I}$, $X_L = \frac{VL}{I}$, $X_C = \frac{VC}{I}$, $L = X_L/w$, $C = 1/wX_C$

Procedure:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Switch On the AC supply
- 3. Set the variac to zero value
- 4. Vary the variac to a suitable value and note down the reading of V, VR, VL, VC, I and W.
- 5. Repeat step 4 and take more reading.

Result:

Value of power factor and circuit constant (R,L,C) have been obtained successfully.

Precaution:

- 1. Make the connections properly.
- 2. Note the readings of voltmeters and ammeters properly avoid parallax
- 3. Avoid loose connections and don't touch wire with wet hand.
- 4. Before connecting all instruments check their zero reading.