EXPERIMENT NO. 1

Objective: To verify Ohm's law.

Apparatus Required:

Sr.	Apparatus	Quantity	Range /Remark	
No.				
1	D.C. Supply	1	() V, ()A	
2	D.C Voltmeter	1	() V	
3	DC Ammeter	1	() mA	
4	Resistance box	1	R=	
5	Multimeter		To Measure Resistance	
6	Connecting wires			

Circuit Diagram:

Fig 1 – Ohm's Law Circuit Diagram

Observation Table:Standard Resistance Ro=..... (Resistance box value as measured by Multimeter)

S.N.	Applied voltage(V)	I(mA)	$R=V/I(\Omega)$	$Error = (\frac{Ro - R}{Ro}) \times 100$

Theory:

This law applies to electric-to-electric conduction through good conductors and may be stated as follows:

The ratio of potential difference (V) between any two points on a conductor to the current (I)flowing between them, is constant, provided the temperature of the conductor does not change.

In other words,

$$\frac{V}{I} = \text{ constant or } \frac{V}{I} = R$$

Where, R is the resistance of the conductor between the two points considered.Put in another way, it simply means that provided R is kept constant, current is directly proportionalto the potential difference across the ends of a conductor. However, this linear relationshipbetween V and I do not apply to all non-metallic conductors.

Model graph:

Graph in between V and I

Result: Ohm's law has been correctly verified.

Precaution:

- 1. Make the connections properly.
- 2. Note the readings of voltmeters and ammeters properly avoid parallax
- 3. Connect the DC supply and ammeter with correct polarity.
- 4. Avoid loose connections and don't touch wire with wet hand.