EXPERIMENT NO-8

PULSE POSITION MODULATION AND DEMODULATION

<u>AIM:</u> To study the generation Pulse Position Modulation (PPM) and Demodulation. **<u>APPARATUS:</u>**

- 1. Pulse Position Modulation (PPM) and demodulation Trainer Kit.
- 2. C.R.O(30MHz)
- 3. Patch chords.
- 4. PC with windows(95/98/XP/NT/2000)
- 5. MATLAB Software with communication toolbox

THEORY:-

Pulse Modulation is used to transmit analog information in this system continuous wave forms are sampled at regular intervals. Information regarding the signal is transmitted only at the sampling times together with synchronizing signals.

At the receiving end, the original waveforms may be reconstituted from the information regarding the samples. Pulse modulation may be subdivided in to two types analog and digital. In analog the indication of sample amplitude is the nearest variable. In digital the information is a code.

The pulse position modulation is one of the methods of the pulse time modulation.PPM is generated by changing the position of a fixed time slot.

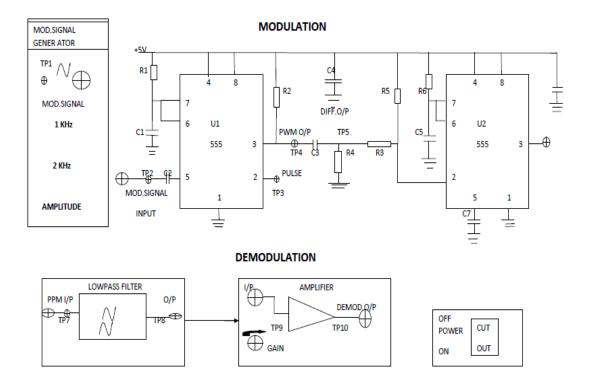
The amplitude& width of the pulses is kept constant, while the position of each pulse, in relation to the position of the recurrent reference pulse is valid by each instances sampled value of the modulating wave. Pulse position modulation into the category of analog communication. Pulse-Position modulation has the advantage of requiring constant transmitter power output, but the disadvantage of depending on transmitter receiver synchronization.

Pulse-position modulation may be obtained very simply from PWM. However, in PWM the locations of the leading edges are fixed, whereas those of the trailing edges are not. Their position depends on pulse width, which is determined by the signal amplitude at that instant. Thus, it may be said that the trailing edges of PWM pulses are, in fact, positionmodulated. This has positive-going narrow pulses corresponding to leading edges and negative-going pulses corresponding to trailing edges. If the position corresponding to the trailing edge of an un modulated pulse is counted as zero displacement, then the other trailing edges will arrive earlier or later. They will therefore have a time displacement other than zero; this time displacement is proportional to the instantaneous value of the signal voltage. The differentiated pulses corresponding to the leading edges are removed with a diode clipper or rectifier, and the remaining pulses, is position-modulated.

Circuit Description:-

Modulating Signal Generator:-

A 4.096 MHz clock is used to derive the modulating signal, which is generated by an oscillator circuit comparing a 4.096MHz crystal and three 74HC04(U9) inverter gates. This 4.096 MHz clock is then divided down in frequency by a factor of 4096, by binary counter 74HC4040(U4), to produce 50% duty cycle, 1 KHz square wave on pin no.1 of U4, and 2 KHz square wave on pin no.15. The frequency is selectable by means of SW1. This goes to input of fourth order low pass filter U3 (TL072) is used to produce sine wave from the square wave. The amplitude of this sine wave can be varied.


Modulation:-

The circuit uses the IC 555(U1) a Mono stable Multivibrator to perform the pulse position Modulation action.

The Modulating signal is given to Pin No. 5 at Pin No.2 the pulse is 32 KHz which is connected internally.

The PWM is available at TP2; this PWM output is differentiated by using differentiated circuit. This differentiated output is available at TP8. This differentiated output is fed to the 555 IC (U2) (Mono stable Mode) Pin No.2. The PPM output is available at TP3.

CIRCUIT DIAGRAM:

PROCEDURE:

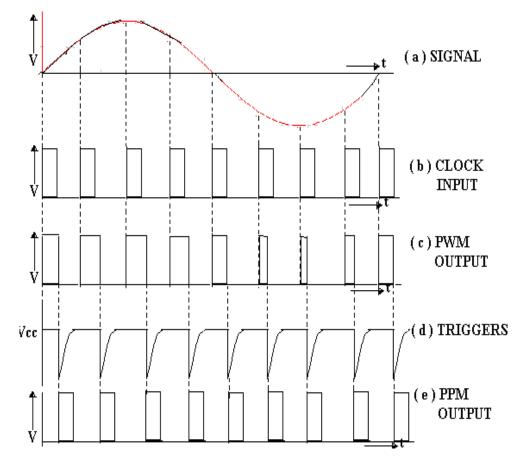
Modulation:

- 1. Connect the circuit as shown in diagram 1.
 - a. Connect the modulating signal generator output to modulating signal input (TP1) in PPM block.
 - b. Keep the switch in 1 KHz position and amplitude pot in max position.
- 2. Switch ON the power supply
- 3. Observe the PWM output at TP2, and the differentiated output signal at TP8.
- 4. Now, monitor the PPM output at TP3.
- 5. Try varying the amplitude and frequency of sine wave by varying amplitude pot.
- 6. Repeat Step 5 for frequency of 2 KHz and observe the PPM output.
- 7. Switch OFF the power supply.

Demodulation:-

- 8. Connect the circuit as shown in diagram2.
 - a. Connect the modulating signal generator output to modulating signal input

(TP1) in PPM block.


- b. Keep the switch in 1 KHz position and amplitude pot in max position.
- c. Connect the PPM output (TP3) to input of LPF(TP4).
- 9. Switch ON the power supply
- 10. Observe the demodulated signal at the output of LPF at TP5.
- 11. Thus the recovered signal is true replica of the input signal
- 12. a. As the output of LPF has less amplitude, connect the output of LPF to the input of an AC amplifier (TP5 to TP6).

b. Observe the demodulated out put on the oscilloscope at TP7 and also observe the amplitude of demodulated signal by varying gain pot. This is amplitude demodulated output.

13. Repeat the steps (7 to 9) for the modulating signal for frequency 2 KHz.

14. Switch OFF the power supply.

EXPECTED WAVEFORMS:

RESULT:

QUESTIONS:

- 1. What is the advantage of PPM over PWM?
- 2. Is the synchronization is must between Tx and Rx
- 3. Shift in the position of each pulse of PPM depends on what?
- 4. Can we generate PWM from PPM?
- 5. Why do we need 555 timers?
- 6. Does PPM contain derivative of modulating signal compared to PWM?
- 7. For above scheme, do we have to use LPF and integrator in that order?

8. If we convert PPM to PWM & then detect the message signal, will the o/p has less distortion?

- 9. Is synchronization critical in PPM?
- 10. How robust is the PPM to noise?