EXPERIMENT No.-5

TITLE: To Study of Sampling Techniques.

AIM OF THE EXPERIMENT:

1. <u>To obtain the sampled output for given modulating signal input.</u>

2. Verify the sampling theorem for different modulating frequencies $f_{s}\!<2f_{m},\,f_{s}\!=2f_{m}$ and f_{s}

<u>>2fm.</u>

3. Reconstruct the original signal from the sampled signal.

EQUIPMENTS/ APPARATUS REQUIRED :

Sl.No	Name of the Equipment/ Component	Specifications/ Range	Quantity
•			
1.	Sampling Theorem Trainer Kit		1
2.	Digital storage oscilloscope	100MHz,1GSa/S	1
3.	Power supply		1
4.	Probes		As per req.
5.	Patch cord		As per req.
6.	Connecting wires		As per req.

THEORY:

Sampling is the process of conversion of analog signal to discrete signal. Sampling Theorem shows that a continuous-time band-limited signal may be represented perfectly by its samples at uniform intervals of T seconds, if T is small enough. In other words, the continuous-time signal may be reconstructed perfectly from its samples; sampling at a high enough rate is information-lossless.

Sampling theorem states that

- 1. The band limited signal of finite energy, which has no frequency component higher than w hertz, is completely described by specifies the value of signal at instant of time separated by 1/2w second.
- 2. The band limited signal of finite energy, which has no frequency component higher than w hertz, must be completely recovered from knowledge of its samples taken at rate of 2w per second.

$$Fs \ge 2 fm$$

If the sampling frequency is less than Nyquist rate, then a distortion is called aliasing.

PROCEDURE:

- 1. Connections are given as per the block diagram.
- 2. Take the sine wave as input of 1KHZ from signal generator block.
- 3. Observe the carrier waveform and note down the amplitude and time period of the signal.
- 4. Observe the sampled signal and note down the amplitude and time period of the signal.
- 5. Observe the sampled and hold signal and note down the amplitude and time period of the signal.
- 6. Then the sampled signal is given as an input to low pass filter and then reconstructed waveform isobtained in output of low pass filter.
- 7. Plot the graph for the Sampled signal and Sample and Hold Signal.

BLOCK DIAGRAM/ CIRCUIT DIAGRAM:

GRAPH:

OBSERVATION:

Modulating signal				Carrier signal						
Signa l Type	Time Perio d	Frequency	Amplitude	Signa l Type	Time Perio d	Frequency	Amplitude			
Sine Wav e				Squar e Wave						
Demodulated Output										
Signal Type		Time	Time Period		Frequency		Amplitude			
Sine Wave										

RESULTS: The sampling theorem is verified successfully.

CONCLUSION: The modulating signal can be reconstructed from sampled signal successfully when $Fs \ge 2$ fm.

PRECAUTIONS:

- 1. Do not use open ended wires to connect 230V, 50Hz power supply.
- 2. Check the connection before giving the power supply.

- 3. Observations should be done carefully.
- 4. Disconnect the circuit after switched off the power supply.