Experiment

Phase diagram for a three-component system

Prepared By:

Prof. Khemchand Dewangan
Department of Chemistry
Guru Ghasidas Vishwavidyalaya,
Bilaspur - 495009
Chhattisgarh, BHARAT

Date: \qquad Room Temperature: $30^{\circ} \mathrm{C}$

Objective: To construct the phase diagram for a three-component liquid system, consisting of Chloroform, Acetic acid, and Water.

Requirements:

(a) Apparatus and Glassware: Ten glass-stoppered bottles, Three burettes, Separating funnel, Conical flask, Pipette, Thermostat bath (room temperature), Beaker.
(b) Chemicals:

- Chloroform $\left(\mathrm{CHCl}_{3}\right)\left(\right.$ molecular weight $\left.=119.38 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
- Acetic Acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ (molecular weight $60.05 \mathrm{~g} \mathrm{~mol}^{-1}$)
- Distilled water $\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\right.$ molecular weight $\left.=18.016 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
- $\quad 1.0 \mathrm{~N} \mathrm{NaOH}$ and 1.0 N Oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right)$

1. Principle

1.1 Phase Rule:

Information regarding phase equilibria can be predicted by following phase rule of Gibbs:

$$
\begin{equation*}
F=C-P+2 \tag{1}
\end{equation*}
$$

where C is the number of components and P is the number of phases present in the system. The degrees of freedom F, or variance, gives the number of variables (e.g., pressure, temperature, composition, etc.) that must be given to completely describe the system, or to locate the state of the system on the phase diagram.

For ternary systems (i.e., consisting of three components), we have $C=3$ and $F=5-$ P. If the system consists of only one phase, $F=4$. The required four variables for describing such system are: two for describing the relative composition (mass fractions) and one of the pairs (pressure, volume), (pressure, temperature), or (temperature, volume). Therefore, graphical representation of ternary system requires four-dimensional diagram and that is very difficult to draw in simple paper-pencil.

Generally, the three-component system experiment is conducted at constant pressure (open atmosphere, i.e., 1 atm) and constant temperature so that these are not variable. Thus, Eq. (1) becomes

$$
\begin{align*}
& F=C-P+2-2 \tag{2}\\
& F=C-P \tag{3}
\end{align*}
$$

and for a three component system $F=3-P$. Thus in a three-component system, if only one liquid phase is present, $F=2$ and the concentration of two of the chemical substances must be specified in order to describe the system completely. If two immiscible liquid phases are present in equilibrium, $F=1$ and the concentration of the only one component need to be specified - the concentration of the others may be ascertained by reference to the phase diagram.

1.2. Method of graphical representation of three-component system

The behavior of a three-component system at constant temperature and pressure can be represented in a planar triangular diagram with three co-ordinates as illustrated in Fig. 1. This graph accounts for the fact that only two variables are required. And along the phase boundary only one variable is required.

Fig. 1. Representation of a three-component system in a triangular phase-diagram. (Pressure and temperature are assumed to be fixed)

In the diagram above, the three apexes (corners) of the triangle represent a pure component each, i.e. 100% by weight of one component $(A, B$, or $C)$. The three lines joining the corner points represent two-component mixture of the three possible combinations of A, B, and C. The perpendicular distance from each apex to the opposite side is divided in to 100 equal parts, corresponding to percent, and labeled along the side at the right of the perpendicular. The area within the triangle represents all the possible combinations of A, B, and C to give three-component system.

In an equilibrium stage of triangle, the sum of the perpendiculars from a given point to the three sides is a constant. A point situated on one of the sides of the triangle indicates that there are two components with percentage composition. The composition corresponding to any point within the triangle is obtained by measuring on these coordinates the distance toward apex A, the distance toward apex B, and the distance toward apex C. For examples, point \boldsymbol{K} indicates $70 \% C, 30 \% A$, and $0 \% B$; point \boldsymbol{L} represents the composition $20 \% A, 50$ $\% B$, and $30 \% C$.

2. Solution Preparation

2.1. $\quad 1.0 \mathrm{~N} \mathrm{NaOH}$ in 250 mL

$$
\begin{aligned}
& w=\frac{\text { Normality } \times \text { Equiv. Wt. } \times \text { Volume }}{1000} \\
& w=\frac{1.0 \times 40 \times 250}{1000}=10 \mathrm{~g}
\end{aligned}
$$

Dissolve approximately 10 g of NaOH in 250 mL volumetric flask with distilled water and make up to the mark with distilled water. (Standardization is required).

2.2. $\quad 1.0 \mathrm{~N} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ (oxalic acid) in $\mathbf{5 0} \mathbf{~ m L}$

$$
w=\frac{1.0 \times 63 \times 50}{1000}=3.15 \mathrm{~g}
$$

Dissolve 3.150 g of oxalic acid in 50 mL volumetric flask with distilled water and make up to the mark with distilled water.

3. Experimental Procedure

3.1. Preparation of phase diagram:

(i) Set up burettes containing $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \& \mathrm{H}_{2} \mathrm{O}$.
(CAUTION: Glacial acetic acid is corrosive).
(ii) Make up accurately in the clean and dry stoppered glass bottles, mixtures of CHCl_{3} and $\mathrm{CH}_{3} \mathrm{COOH}$ containing $1.5,2.0,2.5,3.5,6.5,9.5,13.0$, and 16.0 mL of CHCl_{3}, the total volume of each mixture being 20 mL . Kept these bottles to in thermostat to allow equilibrating at room temperature.
(iii) After attaining to room temperature, titrate each mixtures with $\mathrm{H}_{2} \mathrm{O}$ (shaking well after each addition) until the homogenous solution becomes permanently turbid. Note the volumes of water added. Note the room temperature.
(The turbidity results from scattering of light by the large number of very small "oily" droplets of the second phase that are produced when the system is stirred. Sometimes it is easier to see this when stopping the stirring briefly.)
(iv) From the volumes and densities of $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \& \mathrm{H}_{2} \mathrm{O}$, calculate the weight percent of compositions of the ternary mixtures, and plot them on triangular graph paper. Draw the complete Isotherm. Given that at room temperature a saturated solution of chloroform in water contains $0.809 \mathrm{~g} \mathrm{CHCl}_{3}$ in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ $\left(20^{\circ} \mathrm{C}\right)$, and a saturated solution of water in chloroform contain $1.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ in 100 $\mathrm{mL} \mathrm{CHCl}_{3}$.

3.2 Determination of tie-lines:

(i) Using the burette as before, make up accurately in clean and dry two bottles having the mixtures of the compositions (\mathbf{X}) and (\mathbf{Y}) as following:

Bottle	Compositions	$\mathbf{C H C l}_{\mathbf{3}}$	$\mathbf{C H}_{\mathbf{3}} \mathbf{C O O H}$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$
		$\mathbf{m L}$	$\mathbf{m L}$	$\mathbf{m L}$
1	\mathbf{X}	6.5	3.5	10.0
2	\mathbf{Y}	5.5	7.5	7.0

Then shake each bottle for 30 minutes and let the solution settle for two separate layers.
(ii) Mean while, prepare 250 mL of approximately 1.0 N Sodium hydroxide solution and standardize with 1.0 N oxalic acid, using phenolphthalein as indicator.
(iii) Separate layers of the above X and Y composition by a separatory funnel (which should be clean and dry in each time).
(iv) Then weigh accurately four clean and dry conical flasks and their corks. Run exact 5.0 mL of each layers of compositions in a conical flask and reweigh. (Table: 2)
(v) After weighing conical flasks, titrate the acid in each conical flask with the standardized NaOH solution, using phenolphthalein as indicator. (Table: 3)
(vi) From the titers, calculate the weight percent of acetic acid in each layer. This fixes the positions on the isotherm of the ends of the tie-lines, since it is known which layers are $\mathrm{H}_{2} \mathrm{O}$-rich and CHCl_{3}-rich, indicate the ends (P and Q for composition X) and (R and S for composition Y) and join them by straight lines.

4. Calculation and Observation Table

4.1 Drawing of phase-diagram

Mass fractions for $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, and $\mathrm{H}_{2} \mathrm{O}$ in different mixture are summarized in Table 1. Mass fractions (in \%) for each component in every solution can be calculated using the following equation:

$$
\text { Mass Fraction }(\text { in } \%)=\frac{V_{i} \rho_{i}}{\sum_{i=1}^{3} V_{i} \rho_{i}} \times 100
$$

where V_{i} is the volume and ρ_{i} the density of the component $i\left(\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \& \mathrm{H}_{2} \mathrm{O}\right)$. The densities of $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \& \mathrm{H}_{2} \mathrm{O}$ are $1.4892,1.1491,0.9947 \mathrm{~g} / \mathrm{mL}$, respectively.

From the obtained mass fraction (in \%) of $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, \& $\mathrm{H}_{2} \mathrm{O}$ draw a triangular graph. Fig. 2 shows a triangular phase-diagram of experimental CHCl_{3} $\mathrm{CH}_{3} \mathrm{COOH}-\mathrm{H}_{2} \mathrm{O}$ ternary system.

Fig. 2. A triangular phase diagram for $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, \& $\mathrm{H}_{2} \mathrm{O}$ ternary system. Lines PQ and RS are representing tie-lines for compositions \mathbf{X} and \mathbf{Y}, respectively.

Table 1: Calculation of mass fraction

Density of Water ρ_{1}	0.9947	$\mathrm{~g} / \mathrm{mL}, 30^{\circ} \mathrm{C}$
Density of Acetic Acid ρ_{2}	1.1491	$\mathrm{~g} / \mathrm{mL}, 30^{\circ} \mathrm{C}$
Density of Chloroform ρ_{3}	1.4892	$\mathrm{~g} / \mathrm{mL}, 30^{\circ} \mathrm{C}$

Bottle No.	Composition	Volume V_{i}	$\begin{aligned} & \text { Mass } \\ & V_{i} \rho_{i} \end{aligned}$	Total Mass $\sum_{i=1}^{3} V_{i} \rho_{i}$	Mass Fraction $\frac{V_{i} \rho_{i}}{\sum_{i=1}^{3} V_{i} \rho_{i}} \times 100$
		mL	g	g	\%
Saturated Solution of CHCl_{3} in $\mathrm{H}_{2} \mathrm{O}$	CHCl_{3}	0.54	0.804	99.737	0.806
	$\mathrm{CH}_{3} \mathrm{COOH}$	0.00	0.000		0.000
	$\mathrm{H}_{2} \mathrm{O}$	99.46	98.933		99.194
1	CHCl_{3}	1.50	2.234	48.360	4.619
	$\mathrm{CH}_{3} \mathrm{COOH}$	18.50	21.258		43.959
	$\mathrm{H}_{2} \mathrm{O}$	25.00	24.868		51.422
2	CHCl_{3}	2.00	2.978	43.556	6.838
	$\mathrm{CH}_{3} \mathrm{COOH}$	18.00	20.684		47.488
	$\mathrm{H}_{2} \mathrm{O}$	20.00	19.894		45.674
3	CHCl_{3}	2.50	3.723	41.737	8.920
	$\mathrm{CH}_{3} \mathrm{COOH}$	17.50	20.109		48.181
	$\mathrm{H}_{2} \mathrm{O}$	18.00	17.905		42.899
4	CHCl_{3} ?	3.50	5.212	38.596	13.505
	$\mathrm{CH}_{3} \mathrm{COOH}$	16.50	18.960		49.125
	$\mathrm{H}_{2} \mathrm{O}$	14.50	14.423		37.370
5	CHCl_{3}	6.50	9.680	31.161	31.064
	$\mathrm{CH}_{3} \mathrm{COOH}$	13.50	15.513		49.783
	$\mathrm{H}_{2} \mathrm{O}$	6.00	5.968		19.153
6	CHCl_{3}	9.50	14.147	29.197	48.455
	$\mathrm{CH}_{3} \mathrm{COOH}$	10.50	12.066		41.325
	$\mathrm{H}_{2} \mathrm{O}$	3.00	2.984		10.221
7	CHCl_{3}	13.00	19.360	28.497	67.934
	$\mathrm{CH}_{3} \mathrm{COOH}$	7.00	8.044		28.226
	$\mathrm{H}_{2} \mathrm{O}$	1.10	1.094		3.840
8	CHCl_{3}	16.00	23.827	28.921	82.387
	$\mathrm{CH}_{3} \mathrm{COOH}$	4.00	4.596		15.893
	$\mathrm{H}_{2} \mathrm{O}$	0.50	0.497		1.720
Saturated Solution of $\mathrm{H}_{2} \mathrm{O}$ in CHCl_{3}	CHCl_{3}	98.99	147.416	148.421	99.323
	$\mathrm{CH}_{3} \mathrm{COOH}$	0.00	0.000		0.000
	$\mathrm{H}_{2} \mathrm{O}$	1.01	1.005		0.677

4.2. Preparation of tie-lines

Standardization of NaOH

Standardization is the process of determining the exact concentration (normality/molarity) of a secondary standard solution. In our experiment, exact normality of the NaOH is obtained by the acid-based titration as given below. The exact normality of prepared NaOH is obtained 0.9 .

Titration of oxalic acid versus $\mathbf{N a O H}$

$\mathrm{N}_{1} \mathrm{~V}_{1}($ Oxalic acid $)=\mathrm{N}_{2} \mathrm{~V}_{2}(\mathrm{NaOH})$

$$
\begin{gathered}
1.0 \times 10=\mathrm{N}_{2} \times 11.1 \\
\mathrm{~N}_{2}=0.9 \mathrm{~N}
\end{gathered}
$$

Thus, mass fraction of acetic acid present in the CHCl_{3}-rich and $\mathrm{H}_{2} \mathrm{O}$-rich layers in the composition X and Y can be obtained by simple $\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$ relation and the results are summarized given in Table 2 and Table 3. The tie-lines PQ and RS for the compositions X and Y , respectively are plotted and shown in the Fig 1.

Table 2: Weight of upper and lower layers of compositions X and Y

S. No	Composition Layer	Rich Layers	Weight of empty conical flask	Weight of conical flask with 5 mL composition	Absolute weight of 5 mL composition
	\mathbf{g}	\mathbf{g}	\mathbf{g}	\mathbf{g}	
1	X-Upper	$\mathrm{H}_{2} \mathrm{O}-$ rich	125.239	130.117	4.878
2	X-Lower*	CHCl_{3}-rich	123.984	130.649	6.665
3	Y-Upper	$\mathrm{H}_{2} \mathrm{O}-$ rich	122.875	127.853	4.978
4	Y-Lower	CHCl_{3}-rich	129.415	135.652	6.237
* Denser liquid is reside in the lower part					

Page $\mathbf{8}$ of $\mathbf{1 0}$

Table 3: $\mathbf{C H}_{3} \mathbf{C O O H}$ present in each layer of composition X and Y
Aliquot 5 mL composition

Point	Layer	Absolute weight of 5 $\mathbf{m L}$ composition	Titer value of $\mathbf{N a O H}$	Concentra- tion of Acid	Weight of acid present in $\mathbf{5} \mathbf{~ m L}$ aliquot	Mass fraction of acid
	\mathbf{g}	$\mathbf{m L}$	\mathbf{N}	$\mathbf{g} / \mathbf{5} \mathbf{~ m L}$	$\mathbf{\%}$	
\mathbf{P}	X-Upper	4.878	22.3	4.014	1.204	24.686
\mathbf{Q}	X-Lower	6.665	6.4	1.152	0.346	5.185
\mathbf{R}	Y-Upper	4.978	43.3	7.794	2.338	46.971
\mathbf{S}	Y-Lower	6.237	19.3	3.474	1.042	16.710

5. Result and Discussion

Fig. 2 shows the phase-diagram and tie lines for the experimental $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, \& $\mathrm{H}_{2} \mathrm{O}$ ternary system. This is an example of ternary liquid system, where one pair of liquids is partially miscible to each other. In this system, pair $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{COOH}$ and pair CHCl_{3} $\mathrm{CH}_{3} \mathrm{COOH}$ are completely miscible at all concentrations, while pair $\mathrm{H}_{2} \mathrm{O}-\mathrm{CHCl}_{3}$ is partially miscible and form two liquid phases which do not mix with each other. All mixtures of these three liquids having composition lying below the curve shown in Fig. 1 will separate in two separate liquid phases, while all mixtures having compositions lying above the curve will give one homogeneous liquid phase. The one- and two- phase regions have been separated by a black line in the Fig. 2.

For example, mixture \mathbf{X} will separate into two liquid phases, one having the composition $\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right.$-rich $)$ and the other the composition $\mathrm{Q}\left(\mathrm{CHCl}_{3}\right.$-rich $)$ and line connecting these two immiscible ternary solutions in equilibrium with each other is called a tie-line. The tie-line PQ also passes through the gross composition of mixture \mathbf{X} which is indicated in triangular graph and this is accordance with the phase rule. The relative amount of phase P is given by the ratio $\mathrm{XQ} / \mathrm{PQ}$, and relative amount of phase Q by the ratio $\mathrm{XP} / \mathrm{PQ}$. The negative slope of tie-lines i.e. downward to right, indicating that $\mathrm{CH}_{3} \mathrm{COOH}$ is more soluble in $\mathrm{H}_{2} \mathrm{O}-$ rich phase than CHCl_{3}-rich phase.

As the amount of $\mathrm{CH}_{3} \mathrm{COOH}$ is increased (mixture \mathbf{Y}), the length of tie-line is reduced, thus compositions of $\mathrm{H}_{2} \mathrm{O}$-rich and CHCl_{3}-rich phases approach each other. Finally, a particular composition of $\mathrm{CH}_{3} \mathrm{COOH}$ the two conjugate solutions have the same
composition. Therefore, the two layers have become one and this point is called the plait point.

Practical Application: The increase in mutual solubility of two liquids due to the addition of a third is of practical as well as theoretical importance. Calculation in two-phase extraction processes may be carried out, using triangular diagrams.

6. Precautions

- The percentage by weight of $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \& \mathrm{H}_{2} \mathrm{O}$ for each of the mixtures that showed the first indication of turbidity is plotted on the triangular graph paper.

7. Further Reading

(i) Read up details of the Gibbs phase rule.
(ii) Physical Chemistry, P. W. Atkins and J. D. Paula, Eds: $7^{\text {th }}$, Oxford University Press.
(iii) Principle of Physical Chemistry, B. R. Puri, L. R. Sharma, and Pathania, Vishal Publishing Co. Jalandhar.
(iv) Experimental Physical Chemistry, F Daniels, R. Alberty, J. W. Williams, C. D. Cornwell, P. Bender, and J. E. Harriman, McGraw-Hill, 1970.
(v) J. R. Clarke, J. Chem. Ed. 51, 255 (1974).

