

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

Department : Mechanical Engineering		
Academic Year: 2021-22		
Sr. No.	Programme Code	Name of the Programme
01.	ENT-PG-ME01000	M. Tech Machine Design

Following students have carried out their Project work/ Internship/ Field Project/Industrial Training for the academic session 2021-22

S.No.	Name of the Students	Page No
1	Ashutosh Sharma	2-6
2	Tejasvi Kumar Kashyap	7-11
3	Pritishchand Bareth	12-16
4	Rizwan Khan	17-21
5	Pranav Gupte	22-27
6	Shubhjeet Mukherjee	28-33
7	Ravishankar Mishra	34-38
8	Khileshwar Kumar Sahu	39-42
9	Saurabh Mishra	43-46
10	Pushpendra Pratap Singh	47-51
11	Mohammad Aarish Ameen	52-57
12	Hupesh Patel	58-62

विभागाध्यक्ष/Head यांक्रिकी अभियांत्रिकी विभाग/Mechanical Engg. De प्रौद्योगिकी संस्थान/Institute of Technology गुरु घासीदास वि.वि./Guru Ghasidas V.V. कोनी, बिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.)

CFD ANALYIS OF EVACUATED TUBE SOLAR COLLECTOR FOR AIR HEATING APPLICATIONS

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY

(Machine Design)

SUBMITTED BY

ASHUTOSH SHARMA

(Roll Number: 20701002)

Under the supervision of

Dr. T.V. ARJUNAN

Professor

DEPARTMENT OF MECHANICAL ENGINEERING

School of Studies of Engineering & Technology,

Guru Ghasidas Vishwavidyalaya (A Central University)

Bilaspur, Chhattisgarh, India

SEPTEMBER 2022

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS

Candidate's Declaration		2
Certificate		3
Certificate from Examiners		4
Acknowledgement		5
Abstract		6
List of Figures		7
List of tables		8
Nomenclature		9
		more distance
CHAPTER	DESCRIPTION	PAGE
NUMBER	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	NUMBER
Chapter 1	INTRODUCTION	12
	1.1 Solar Energy & Solar Collectors	12
	1.2 Evacuated Tube Solar Collectors	13
	1.3 Background & Motivation	16
Chapter 2	LITERATURE REVIEW	17
	2.1 Literature review	17
	2.2 Observations from the Literature review	20
	2.3 Objective of Thesis work	20
Chapter 3	METHODOLOGY	21
	3.1 Steps involved in research work	21
Chapter 4	SYNOPSIS OF WORK & DESCRIPTION OF MODEL	22
	4.1 Selected literature for reference & research validation	22
	4.2 Description of model	22
	4.3 Numerical Simulations	24
	4.4 Validation of Study & mesh structure	25
	4.5 Boundary Conditions	26
	4.6 Mathematical Model	27
Chapter 5	RESULTS & DISCUSSIONS	29
	5.1 Analysis results	29

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF FIGURES

Fig: 1.1.1 – Types of Solar Collectors	13
Fig: 1.2.1 – Evacuated Tube Solar Collectors	14
Fig: 1.2.2 – Borosilicate Tube Cross Sectional view	14
Fig: 4.2.1 – 3D Model of ETSC	23
Fig: 4.2.2 - Heat Flow & Boundary Conditions	24
Fig: 4.4.1 – Mesh structure of the 12 tube model ETSC	26
Fig: 5.1.1 – Outlet Temperature vs mass flow rate	30
Fig: 5.1.2 – Outlet Temperature vs collector angle	31
Fig: 5.1.3 – Temperature Contours (Air)	31
Fig: 6.1.1 – Evacuated Tube Solar Collector – Experimental Model at GGU Bilaspur	32
Fig: 6.2.1 – Schematic diagram of the Manifold Channel (Left) and the Evacuated Tube Solar Collector (Right)	33
Fig: 6.3.1 – Variation of inlet, outlet temperature and solar intensity at a mass flow rate of 0.0026 Kg/s (Average data values of March 2022)	34
Fig: 6.3.2 – Variation of inlet, outlet temperature and solar intensity at a mass flow rate of 0.0044 Kg/s (Average data values of March 2022)	35
Fig: 6.3.3 – Variation of inlet, outlet temperature and solar intensity at a mass flow rate of 0.0051 Kg/s (Average data values of March 2022)	35
Fig: 6.3.4 – Variation of inlet, outlet temperature and solar intensity at a mass flow rate of 0.0062 Kg/s (Average data values of March 2022)	35
Fig: 6.3.5 – Variation of inlet, outlet temperature and solar intensity at a mass flow rate of 0.0073 Kg/s (Average data values of March 2022)	36

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्तविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विस्तविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Table – 4.2.1: Technical Data of ETSC (for validation)	22
Table – 4.2.2: Technical Data of ETSC (This Work)	23
Table – 4.4.1: Validation of Study results comparison	25
Table – 4.6.1: Thermophysical properties of water & air	28
Table – 5.1.1: Manifold outlet temperatures (K) upon the collector angles and the mass flow rates	29
Table – 5.1.2: Flow regime vs mass flow rates	30

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

This is to certify that the thesis entitled "CFD ANALYIS OF EVACUATED TUBE SOLAR COLLECTOR FOR AIR HEATING APPLICATIONS" submitted by ASHUTOSH SHARMA (Roll no.:20701002) has been carried out under my supervision in partial fulfillment of the requirements for the degree of Master of Technology in Mechanical Engineering (Specialization: Machine design) during session 2021-2022 in the department of Mechanical engineering, Guru Ghasidas Vishwavidyalaya Koni, Bilaspur, Chhattisgarh, India.

To the best of my knowledge, this work has not been submitted to any other University/Institute for the award of any degree or diploma.

Place: Bilaseur

Date: Istulaeur

Dr. T.V. Arjun

Professor, SOSE&T

Guru Ghasidas Vishwavidyalaya,

Bilaspur, Chhattisgarh, India

विभागाध्यक्ष/Head

ावभागाध्यक्ष / Head यां की अभिवादिकी विभाग / Mechanical Engg. De प्रोद्योगिकी संस्थान / Institute of Technology गुरु घासीदास वि.वि. / Guru Ghasidas V.V. कोनी, बिलासपुर (छ.ग.) / Koni, Bilaspur (C.G.)

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

COMPUTATIONAL INVESTIGATION OF FLOW IN 90° PIPE BEND TRANSPORTING HIGH CONCENTRATION FLY ASH SLURRY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY (MACHINE DESIGN)

Submitted by TEJASVI KUMAR KASHYAP

Under the supervision of DR. PANKAJ KUMAR GUPTA
Associate professor

Department of Mechanical Engineering
School of Studies of Engineering and Technology

Guru Ghasidas Vishwavidyalaya (A Central University)
Bilaspur, Chhattisgarh, India

September 2022

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENT

CANDIDATE'S DECLARATIONii
CERTIFICATE
ACKNOWLEDGEMENTiv
ABSTRACTv
LIST OF FIGURESviii
LIST OF TABLESx
NomenclatureXi
List of abbreviationsxii
CHAPTER-011
INTRODUCTION1
1.1 Background
1.2 Ash handling in thermal power plants
1.3 Basic slurry transportation2
1.4 High concentration slurry disposal
1.5 Problem with highly concentrated slurry
1.6 Problem with bend pipe
1.7 specific energy consumption.
1.8 What is CFD ?
1.8.1 Why use CFD?
1.8.2 CFD as a tool
CHAPTER- 02
LITERATURE REVIEW
2.1 Literature review
2.2 Research gap10
2.3 Objective10
CHAPTER- 0311
MATERIALS AND METHODS1
3.1 Introduction
3.2 Collection of Fly ash Sample1
3.2.2 Particle Size Distribution
3.2.3 Specific Gravity
3.2.4 Rheology
3.3 Multiphase model

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Table 3.1 % Finer vs Particle size for all the samples	13
Table 3.2 PSD and Specific Gravity of all The Samples	5
Table 3.3 Rheology Data for all the samples	9
Table 3.4 Details of Pipe meshing	0
Table 3.5 The boundary conditions for Sample 01	2
Table 3.6 The boundary conditions for Sample 02	3
Table 3.7 The boundary conditions for Sample 03	4
Table 3.8 The boundary conditions for Sample 04	5
Table 3.9 Simulations Parameters	5
Table 3 10 Solution Methods 37	7

LIST OF FIGURES

Figure 1.1 Basic slurry transportation
Figure 1.2 High Concentrated Slurry discharge pump
Figure 1.3 The burst pipe near the bend due to slurry transportation5
Figure 3.1 (a) Sieve, (b) Mechanical Sieve Shaker
Figure 3.2 PSD of all the Sample
Figure 3.3 Standard pycnometer
Figure 3.4 Rheometer
Figure 3.5 Rheology Model
Figure 3.6 Flow chart of Methodology
Figure 3.7 Isometric view of Pipe
Figure 3.8 Geometry details of 90-degree horizontal bend
Figure 3.9 (a, b, c) Meshing of Pipe29
Figure 3.10 Boundary conditions for pipe bend
Figure 4.1 Variation of head loss with No. of elements
Figure 4.2 Validation of numerical results with experimental results for
bend pipe40
Figure 4.3 Validation of numerical results with experimental results
for straight pipe
Figure 4.4 Effect of Sample on yield stress
Figure 4.5 variation of yield stress with concentration
Figure 4.6 Variation of head loss with concentrations for sample 0144
Figure 4.7 Variation of head loss with concentrations for sample 0244
Figure 4.8 Variation of head loss with concentrations for sample 03

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

As per University grant commission (promotion of academic integrity prevention of plagiarism in higher education institute) regulation 13th July 2018 thesis "Computational Investigation of Flow in 90° Pipe Bend Transporting High Concentration Fly Ash Slurry" of TEJASVI KUMAR KASHYAP, a student of M.Tech (Machine Design) IV semester has been checked by URKUND software has available at central library, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India. The amount of similarity in the thesis is 0%. Signed URKUND similarity report is attached with certificate.

TEJASVI KUMAR KASHYAP

Sign of the Supervisor

Dr. PANKAJ KUMAR GUPTA

Counter Signature विभागाध्यक्ष/Head मिट्यू विभाग/Mechanical Engg. Dept. यापिकी संस्थान/Institute of Technology Department of Medianical Engineering The Court (उ.ग.)/Koni, Bilasour Ghasidas Vishwavidyalaya, Koni

Bilaspur, Chhattisgarh, India.

विभागाध्यक्ष/Head यांत्रिकी अभियांत्रिकी विभाग/Mechanical Engg. De प्रौद्योगिकी संस्थान/Institute of Technology गुरु घारीदास वि.वि./Guru Ghasidas V.V. कोनी, बिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.)

DESIGN OF PANEL TYPE SOLAR COOKER FOR OPTIMAL THERMAL PERFORMANCE

THESIS

MASTER OF TECHNOLOGY

(Machine Design)

Submitted by

PRITISHCHAND BARETH

Under the supervision of

Dr. PANKAJ KUMAR GUPTA

(Associate Professor)

Department of Mechanical Engineering
School of Studies of Engineering and Technology
Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur,
Chhattisgarh, India
September 2022

TABLE OF CONTENTS

CANDIDATE DECLARATIONii
CERTIFICATEiii
ACKNOWLEDGEMENTiv
ABSTRACTv
TABLE OF CONTENTSvi
LIST OF FIGURESvi
LIST OF TABLESxi
NOMENCLATURExii
CHAPTER 1
INTRODUCTION1
1.1 Basic introduction
1.2 Classification of solar cooker
1.3 Advantage and limitation of solar cooker
CHAPTER 2
LITERATURE REVIEW5
2.1 Literature survey5
2.2 Observations from literature review
2.3 Objective of thesis work
CHAPTER 3
METHODOLOGY9
3.1 Materials9
3.2 Design and development
3.2.1 Configuration of designs
3.2.2 Physical development of designs
3.3 Thermal performance testing
3.3.1 Equipment used

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Table 3.1. Cooking vessel Specification
Table 3.2. Glass box specifications
Table 3.3. Thermocouples arrangements
Table 3.4 Summary of solar ray tracing on 27 th march 2022
Table 4.1(a) Experimental Data of all the thermal performance testing on Design C46
Table 4.1(b) Experimental Data of all the thermal performance testing on Design C47
Table 4.1(c) Experimental Data of all the thermal performance testing on Design C47
Table 4.2 summarised data of thermal performance of Design C for interval 250
Table 4.3. summarised data of thermal performance of Design C for interval 151
Table 4.4. Standard cooking power at 50°C ($P_{s(50)}$) of all solar cookers
Table 4.5. The performance analysis of Design C solar cooker in terms of total cost 53

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF FIGURES

Figure 1.1 A schematic diagram of box type solar cooker
Figure 1.2 (a, b) Panel solar cookers
Figure 1.3 Fun panel funnel solar cooker
Figure 3.1(a, b) Silver Vinyl Wrap and Polypropylene sheet
Figure 3.2 (a, b) Design Configuration of Design A solar cooker
Figure 3.3 Design configuration of Design B.
Figure 3.4 Design configuration of Design C solar cooker
Figure 3.5 (a, b) development of Design A solar cooker
Figure 3.6 (a, b) Development of Design B and Design C solar cooker
Figure 3.7(a, b) Temperature data logger
Figure 3.8- Anemometer and Solar Insolation meter
Figure 3.9 (a, b) position of Design A solar cooker
Figure 3.10 (a, b) position of Design B solar cooker
Figure 3.11 (a, b) orientation of Design C solar cooker
Figure 3.12 All season solar cooker
Figure 3.13 Solar box cooker
Figure 3.14 Cookit solar cooker
Figure 3.15 Experimental setup of Design A with ASSC, SBC, COOKIT solar cooker21
Figure 3.16 side view of panel of Design A and Design B
Figure 3.17 Ray tracing- 27 th March at 8:00 AM
Figure 3.18 Ray tracing- 27th March at 8:30 AM
Figure 4.1 Comparative thermal performance testing of Design A (morning sun
position)

CERTIFICATE

As per University Grant Commission (promotion of academic integrity and prevention of plagiarism in higher institute) regulation 2018 dated 13th July 2018 the thesis "DESIGN OF PANEL TYPE SOLAR COOKER FOR OPTIMAL THERMAL PERFORMANCE" of PRITISHCHAND BARETH, student of M. Tech (Machine Design) 4th semester has been checked by URKUND software available at Central Library, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, INDIA. The amount of similarity in the thesis is 0 %. Signed URKUND similarity report is attached with certificate.

PRITISHCHAND BARETH

Dr. PANKAJ KUMAR GUPTA

Counter sign विभागाध्यक्ष/Head

मिर्विस्पियांत्रिकी विभाग/Mechanical Engg. Dept. मिर्देशीभयात्रका विभाग/Mediantal प्रार्थानिकी संस्थान/Institute of Technology Department के Government of Mediantal Structure के कि सम्बद्धार के Medianical Springering

Guru Ghasidas Vishwavidyalaya, Bilaspur

विभागाध्यक्ष/Head यारिकी अभियांत्रिकी विभाग/Mechanical Engg. De प्रोद्योगिकी संस्थान/Institute of Technology गुरु वासीदास वि.वि./Guru Ghasidas V.V. कोनी, बिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.)

WIND POTENTIAL FOR ENERGY PRODUCTION IN THE SELECTED AREA OF CHHATTISGARH

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY

(Machine Design)

Submitted by

RIZWAN KHAN

Under the supervision of

Mr. BHUSHAN SINGH GAUTAM

&

Dr. RAHUL

Department of Mechanical Engineering
School of Studies of Engineering and Technology
Guru Ghasidas Vishwavidyalaya (A Central University)
Bilaspur, Chhattisgarh, INDIA
Pin- 495009
SEPTEMBER 2022

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS

Title	Page no.
CANDIDATE'S DECLARATION	ii
CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	x
NOMENCLATURE	xi
CHAPTER-1	
INTRODUCTION	1
1.1 History of wind energy	1
1.2 Introduction of wind energy	2
1.2.1 Importance of wind energy	3
1.3 Wind asset evaluation in India, History and improvement	4
1.3.1 Historical background	4
1.3.2 Audit of wind expected appraisal in India	6
1.4 Region of interest	6
1.5 Location of the city's	8
1.6 Sites and data description	8
CHAPTER-2	
LITERATURE SURVEY	12
2.1 Literature review	12
2.2 Literature gap	18

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Table 1 Region of interest in India	7
Table 2 Summary of site related information of Raipur	9
Table 3 Summary of site related information of Ambikapur	9
Table 4 Summary of site related information of Dhamtari	9
Table 5 Summary of site related information of Kawardha	10
Table 6 Summary of site related information of Kondagaon	10
Table 7 Summary of site related information of Korba	10
Table 8 Summary of site related information of Mahasamund	11
Table 9 Summary of site related information of Pathalgaon	11
Table 10 Summary of site related information of Rajhara	11
Table 11 Location co-ordinate of nine cities of Chhattisgarh	20
Table 12 Average wind speed throughout the year for nine cities at 10 m height	21
Table 13 Data shared by NIWE at different height	23
Table 14 Comparison NIWE and Weibull distribution at different height	24
Table 15 Recent data shared by NIWE at 10 m height of 25 years	25
Table 16 Predict the three parameters at 10m height given by NIWE	26
Table 17 Predict all the three parameters to Weibull distribution at 10m given by NIWE	27
Table 18 Comparison Weibull distribution of three parameters with NIWE results	30
Table 19 Outcome of Weibull statistical analysis of nine cities at 10 m height	35
Table 20 Monthly and annual average wind speed at different heights	37
Table 21 Outcome of Weibull statistical analysis of nine cities at 25 m height	38
Table 22 Outcome of Weibull statistical analysis of nine cities at 50m height	39
Table 23 Outcome of Weibull statistical analysis of nine cities at 75m height	39
Table 24 Outcome of Weibull statistical analysis of nine cities at 100 m height	40
Table 25 Features of roof top wind turbine with different model no	11

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वागित केन्रीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF FIGURES

Fig.1 Panemone windmill & ancient windmill	1
Fig.2 Total installed power different types in India	5
Fig.3 Wind power installed in India in different states	6
Fig.4 Installed wind power capacity year 2022	7
Fig.5 Area map of the nine urban location under study in Chhattisgarh	8
Fig.6 Vertical wind shear profile NIWE tool	24
Fig.7 Vertical wind shear profile NIWE tool vs Weibull distribution	24
Fig.8 Mean wind speed vs monthly mean wind speed	28
Fig.9 Wind rose direction	28
Fig.10 Wind speed vs power output	29
Fig.11 Wind speed frequency distribution	29
Fig.12 Compare NIWE tool with predicted value of Shape factor	31
Fig.13 Compare NIWE tool with predicted value of Scale factor	31
Fig.14 Compare NIWE tool with predicted value of Wind power density	32
Fig.15 Comparison of wind data among nine cities	33
Fig.16 Variation of wind data in nine cities of Chhattisgarh	34
Fig.17 Annual average wind speed of nine cities of Chhattisgarh	34
Fig. 18 Weibull characteristics (K and C) of nine cities of Chhattisgarh	36
Fig.19 The wind power density of nine cities at 75m height	41
Fig.20 Vertical axis wind turbine & horizontal axis wind turbine	42
Fig.21 Micro or roof top wind turbine	44

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

This is certified that the thesis entitled "WIND POTENTIAL FOR ENERGY PRODUCTION IN THE SELECTED AREA OF CHHATTISGARH" submitted by "RIZWAN KHAN" (Roll no.-20701011) has been carried out under my supervision in partial fulfilment of the requirements for the degree of Master of Technology in Mechanical Engineering (Specialization: Machine design) during session 2021-2022 in the department of Mechanical Engineering, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, Chhattisgarh, India.

To the best of my knowledge, this work has not been submitted to any other University/Institute for the award of any degree or diploma.

Rizway Jehan Signature of the Student

Rizwan Khan

Meadविभागाध्यक्ष/Head

ाट्याप नामान्यम् । । । । वाक्ति अपियात्रिकी विभाग / Mechanical Engg. Dept. प्रार**ाणिकृत्वाव्यक्ता to EMbeltimeah Milgbycering** गुरू वासीदास वि.वि. / Guru Ghasidas V.V. कोनी, क्रिसास्मुचिक्त्रियंक्रक्रे (अभिक्रायंक्रिक्र प्रकार)

Mr. Bhushan Singh Gautam

विभागाध्यक्ष/Head यांचिकी अभियांत्रिकी विभाग/Mechanical Engg. De प्रोत्योगिकी संस्थान /Institute of Technology मुन्द्र्योगिकी संस्थान /Institute of Technology मुन्ह घारादास वि.वि./Guru Ghasidas V.V. कोनी, दिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.)

FATIGUE CRACK ANALYSIS OF BOLTED RAIL JOINTS SUBJECTED TO VARIABLE LOADING CONDITIONS FOR VARIOUS POSITIONS OF THE JOINT

THESIS

submitted in partial fulfillment of the requirement for the award of the degree of

MASTER OF TECHNOLOGY (Machine Design)

Submitted by

PRANAV GUPTE

Under the supervision of

PRATEEK GUPTA

(Assistant Professor)

Department of Mechanical Engineering
School of Studies of Engineering & Technology
Guru Ghasidas Vishwavidyalaya (A Central University),
Bilaspur, Chhattisgarh, India
Session 2021-2022

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS

Title Page	i
Candidate's Declaration	ii
Certificate	iii
Certificate by Examiners	iv
Acknowledgement	v
Abstract	vi
List of Figures	ix
List of Tables	xi
Nomenclature	xii
Chapter – 1 Introduction	01
1.1 Types of Failure	01
1.2 Fatigue Failure	01
1.3 Ductile & Brittle Fracture	02
1.4 Modes of Failure	03
1.5 Crack Growth	°04
1.6 Energy Release Rate & Crack Resistance	05
1.7 Stable & Unstable Crack Growth	05
1.8 Stress Intensity Factor	07
1.9 Crack Initiation	07
1.10 Finite Element Methods & Analysis	08
1.11 CATIA & ANSYS	10
1.12 History of Railways	10

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वागित केन्रीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Chapter – 2 Literature Review	12
2.1 Finite Element Analysis	12
2.2 Observations from Literature Review	16
2.3 Objective of the Work	16
Chapter – 3 Methodologies	17
3.1 Modelling of Rail, Sleeper, E-Clips & Rail Joint	18
3.2 Specification & Dimensions	19
3.3 Supports & Loads	19
3.4 Transient Analysis	20
3.5 Mathematical Model	22
Chapter – 4 Problem Formulations	23
4.1 Rail Joint in between the two sleepers	23
4.2 Rail Joint near to one end of the sleeper	25
4.3 Rail Joint on the sleeper	28
Chapter - 5 Results & Discussions	31
5.1 Results for Joint in between two sleepers	31
5.2 Results for Joint near to one end of the sleeper	35
5.3 Results for Joint on the sleeper	40
Chapter – 6 Conclusions & Future Scope	45
6.1 Conclusions	45
6.2 Future Scope	46
References	47

viii

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वागित केन्रीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF FIGURES

Figure 1.1 Types of Brittle Fracture (a) Intergranular (b) Transgranular	03
Figure 1.2 (a) Opening (b) In Plane Shear (c) Out of Plane Shear	04
Figure 1.3 (a) Centred – Cracked Plate (b) Stable Crack Growth	06
Figure 1.4 Characteristic Growth Curve of Fatigue Crack	08
Figure 1.5 Two dimensional body & Finite Element Discretization	09
Figure 1.6 Meshing of Mechanical Components	09
Figure 3.1 Three dimensional model of railway assembly (a) Joint in between the sleepers (b) Joint near to the sleeper (c) Joint on the sleeper	17
Figure 3.2 Mesh model of Railway Assembly in ANSYS Workbench	18
Figure 3.3 Boundary Conditions applied on the assembly	18
Figure 3.4 Pattern of load cycle acting on the railway track	21
Figure 4.1 Equivalent (von mises) stress for joint in between the Sleepers	24
Figure 4.2 Equivalent (von mises) stress on Fish Plate for joint in between the Sleepers	24
Figure 4.3 Region of Maximum Stress Concentration on Fish Plate for joint in between the Sleepers	25
Figure 4.4 Mesh Model of Crack on Fish Plate for joint in between the Sleepers	25
Figure 4.5 Equivalent (von mises) stress for joint near to the Sleeper	26
Figure 4.6 Equivalent (von mises) stress on Fish Plate for joint near to the Sleeper	26
Figure 4.7 Region of Maximum Stress Concentration on Fish Plate for joint near to the Sleeper	27
Figure 4.8 Mesh Model of Crack on Fish Plate for joint near to the Sleeper	27
Figure 4.9 Equivalent (von mises) stress for joint on the Sleeper	28
Figure 4.10 Equivalent (von mises) stress on Fish Plate for joint on the	28

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Table 3.1 Specifications & Dimensions of Rail	19
Table 3.2 Maximum Capacity of Vehicle	19
Table 3.3 Vehicle Weight	20
Table 3.4 Transient Loading Pattern over the Rail Track	20
Table 5.1 Data for Total Number of Load Cycles, Crack Extension and	33
Equivalent SIFS	00
Table 5.2 Data for Total Number of Load Cycles, Crack Extension and	37
Equivalent SIFS	31
Table 5.3 Data for Total Number of Load Cycles, Crack Extension and	42
Equivalent SIFS	42

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

As per University Grant Commission (Promotion of academic integrity and prevention of plagiarism in higher education institute) regulation 2018 dated 13 July 2018, the thesis 'FATIGUE CRACK ANALYSIS OF BOLTED RAIL JOINTS SUBJECTED TO VARIABLE LOADING CONDITIONS FOR VARIOUS POSITIONS OF THE JOINT' of PRANAV GUPTE, student of M.Tech (Machine Design) 4th semester has been checked by URKUND software available at Central Library, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India. The amount of similarity in the thesis is 0%. URKUND similarity report is attached with the certificate.

Sign of Student

Pranav Gupte

Sign of Thesis Supervisor

Mr. Prateck Gupta

विभागाध्यक्ष/Head यारिकी अभियांत्रिकी विभाग/Mechanical Engg. De प्रौद्योगिकी संस्थान/Institute of Technology गुरु घासीदास वि.वि./Guru Ghasidas V.V. कोनी, बिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.)

EXPERIMENTAL AND ANALYTICAL PERFORMANCE ANALYSIS ON IMPINGING JET ARC SHAPE ROUGHENED TWISTED FIN SOLAR AIR HEATER.

A THESIS

Submitted in partial fulfilment of the requirement for the award of the degree of

MASTER OF TECHNOLOGY

(Machine Design)

SUBMITTED BY

SUBHJEET MUKHERJEE

(Roll Number: 20701013)

Under the supervision of

Dr. T.V. ARJUNAN

Professor, SOS E&T, GGV, Bilaspur

DEPARTMENT OF MECHANICAL ENGINEERING

School of Studies of Engineering and Technology,

Guru Ghasidas Vishwavidyalaya (A Central University)

Bilaspur, Chhattisgarh, India

DECEMBER 2022

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS

TITLE	PAGE NO
CANDIDATE'S DECLARATION	ii
CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
LIST OF FIGURES	x
LIST OF TABLES	xiii
LIST OF SYMBOLS AND ABBREVIATIONS	
INTRODUCTION	1
1.1 FORCASTING OF GLOBAL ENEGY CONSUMPTION	1
1.2 RENEWABLE ENERGY STATUS	
1.3 SOLAR ENERGY	4
1.4 SOLAR ENERGY TECHNOLOGIES	5
1.5 SOLAR AIR HEATER	6
1.5.1 Constructional features of a conventional flat plate solar air b	neater 8
1.5.2 Classification of Solar Air Heater	9
1.5.2.1 Air flow parallel to the absorber plate	
1.5.2.2 Air flow through the absorber plate	16
1.6 MOTIVATIONAL BACKGROUND	16
1.7 ORGANISATION OF THE THESIS	
LITERATURE REVIEW	
2.1 ARTIFICIAL ROUGHNED SAH	
2.2 DOUBLE PASS SOLAR AIR HEATER	27
2.3 JET IMPINGEMENT SOLAR AIR HEATER	34

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्तविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विस्तविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009) Koni, Bilaspur – 495009 (C.G.)

5.4.2 Thermo Hydraulic Efficiency
5.5 THERMAL PERFORMANCE CALCULATION FOR SAH
5.6 ANALYTICAL SOLUTION PROCEDURE
RESULTS AND DISCUSSIONS
6.1 INTRODUCTION
6.2 HEAT TRANSFER PERFORMANCE
6.2.1 Effect of pitch to width ratio
6.2.2 Effect of number of fins
6.3 FRICTION FACTOR CHARACTERISTICS
6.3.1 Effect of pitch to width ratio
6.3.2 Effect of number of fins
6.4 HEAT TRANSFER AND FRICTION FACTOR CORRELATION 80
6.4.1 Methods of correlations
6.5 DEVELOPMENT OF CORRELATION FOR NUSSELT NUMBER AND
FRICTION FACTOR
6.5.1 Correlation for Nusselt number
6.5.2 Correlation for Friction Factor
6.6 THERMAL AND EFFECTIVE EFFICIENCY
6.6.1 Effect of Pitch to width ratio (P/W)
6.6.2 Effect of number of fins (n)
CONCLUSIONS90
DEEEDENGEG 02

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Table Number	Page No.
Table 4. 1 Design parameters and operating conditions	5
Table 4. 2 Experimental observation for 10 numbers of fins	6
Table 4. 3 Experimental observation for 8 numbers of fins	6
Table 4. 4 Experimental observation for 6 numbers of fins	6
Table 5 1 Typical values of operating and Design parameters used in	nanalytical study 7

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF FIGURES

Figure Number	Page No.
Figure 1.1 Renewable electricity generation increases by technology, 2019-	2020 and 2020-
2021	2
Figure 1.2 Solar Energy from the Sun to Earth	4
Figure 1.3 Distribution of the total installed capacity in operation by collecto	r type in 2020 -
WORLD	7
Figure 1.4 Construction of Conventional solar air heater	9
Figure 1.5 Classification of SAH	11
Figure 1.6 Front view of the v-corrugated solar air heater	11
Figure 1.7 Schematic diagram of the studied model, solar air heater with	fins and baffles
attached over the absorber	12
Figure 1.8 Schematic diagram of 3D triangular duct with square roughness	13
Figure 1.9 Schematic of the double-pass solar collector with porous media	15
Figure 1.10 Solar air heater with internal fins attached.	15
Figure 2.1 Types of Artificial roughness used in SAH	19
Figure 2.2 Perforated V shaped baffle	26
Figure 2.3 Flow pattern of air in spherical and inclined rib protrusions	27
Figure 2.4 Flat plate parallel double pass SAH	29
Figure 2.5 the double pass-finned plate solar air heater	30
Figure 2.6 Parallel flows packed bed solar air heater (PFPBSAH) (2011)	31
Figure 2.7 Finned double-pass SAH	31
Figure 2.8 Schematic drawing of finned plus baffled double – pass solar air her	ater32
Figure 2.9 Schematic view of the absorber plate with attached fins and baffles.	33
Figure 2.10 Inline Jet impingement SAH by	34
Figure 2.11 Schematic diagram of Impingement plate geometry: Location of	streamwise and
spanwise pitch.	35
Figure 2.12 Schematic diagrams of a typical parallel flow solar collector and	d impinging jets
solar collector.	36
Figure 2.13 Schematic cross section view of jet impinging SAH duct	38

CERTIFICATE

As per University grant commission (promotion of academic integrity prevention of plagiarism in higher education institute) regulation 13th July 2018 thesis "EXPERIMENTAL AND ANALYTICAL PERFORMANCE ANALYSIS ON IMPINGING JET ARC SHAPE ROUGHENED TWISTED FIN SOLAR AIR HEATER," of SUBHJEET MUKHERJEE a student of M.Tech (Machine Design) IV semester has been checked by URKUND software has available at central library, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India. The amount of similarity in the thesis is 14%. Signed URKUND similarity report is attached with certificate.

Suthjeet Mukherjee
Sign of the student

SUBHJEET MUKHERJEE

125

Head

Department of Mechanical Engineering

Guru Ghasidas Vishwavidyalaya, Koni

Bilaspur, Chhattisgarh, India.

Sign of the Supervisor

Dr. T.V. Arjunan

X

विभागाध्यक्ष / Head यांक्कि अभियांत्रिकी विभाग / Mechanical Engg. De प्रोदयोगिकी संस्थान / Institute of Technology गुरु घारोदास वि.वि. / Guru Ghasidas V.V. कोमी, बिलासपुर (छ.ग.) / Koni, Bilaspur (C.G.)

DESIGN FEATURE TO MAKE SHOWROOM (GLASS BUILDINGS) ENERGY EFFICIENT

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE $\mathbf{AWARD} \ \mathbf{OF} \ \mathbf{THE} \ \mathbf{DEGREE} \ \mathbf{OF}$

MASTER OF TECHNOLOGY (MACHINE DESIGN)

Submitted by RAVISHANKAR MISHRA

Under the supervision of Mr. BHUSHAN SINGH GAUTAM (Assistant professor)

DEPARTMENT OF MECHANICAL ENGINEERING
SCHOOL OF STUDIES OF ENGINEERING AND TECHNOLOGY
GURU GHASIDAS VISHWAVIDYALAYA (A CENTRAL UNIVERSITY)
BILASPUR, CHHATTISGARH, INDIA
SEPTEMBER, 2022

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्तविद्यात्य अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विस्तविद्यात्य) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENT

CANDIDATE'S DECLARATION	ii
CERTIFICATE	iii
ABSTRACT	v
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF SYMBOLS	x
CHAPTER-1 INTRODUCTION	1
1.1 Introduction	1
1.2 Voice of customers (VOC)	3
1.2.1 Inference from Voice of Customers:	3
1.2.2 Objective from Voice of Customers:	3
CHAPTER-2 LITERATURE REVIEW	4
2.1 Literature reviews	4
2.2 Observations from the literature reviews	6
2.3 Literature Gaps	7
2.4 Objective of this thesis work	7
CHAPTER-3 THEORY AND PRINCIPLE	8
3.1 Glass house effect	8
3.2 Solar Optical Properties	8
3.3 Mode of Heat Transfer	9
3.3.1 Heat conduction through Solid	9
3.3.2 Heat Transfer through Convection	10
3.3.3 Thermal Radiation	11
3.4 Thermal Resistance	11
3.5 The overall heat transfer coefficient (U)	12
3.6 Coefficient of Performance - Refrigerator, Air Conditioner	13
CHAPTER-4 PREPERATION OF EXPERIMENTAL SETUP	15
4.1 Experimental Setup_1	15
4.1.1 Materials used	15
4.1.2 Steps involved in model preparation	15
4.1.4Channel details	17
4.2 Experimental Setup_2	17
4.2.1 material used	17

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वागित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Sable 1 Channel details for experimental setup 1	17
Table 1 Channel details for experimental setup_1	18
Table 2 channel details for setup_2	19
Table 3 South facing front testing readings	20
Table 4 North facing front test readings	21
Table 5 West facing test readings	
Table 6 Inside curtain and Outside curtain test readings	22
Table 7, observation table for Day_1 configuration	24
Table 8 Observation table for Day_2 configuration	25
Table 9 Observation table for Day_3 configuration	27
Table 10 Amount of heat conducted through glass	34
Table 11 Heat transfer through walls, Case1 Setup_2	36
Table 12 Net Heat Gain, Case1, setup2	36
Table 13 Heat added (after maintaining 25°C inside temperature), Case1, setup_2	37
Table 14 Work done by Air conditioner, Case1, setup_2	38
Table 15 Heat transfer through walls, Case2, Setup_2	39
Table 16 Net Heat Gain, Case2, setup2	40
Table 17 Heat added (after maintaining 25°C inside temperature), Case2, setup_2	40
Table 18 Work done by Air conditioner, Case2, setup_2	41
Table 19 Heat transfer through walls, Case3, Setup_2	42
Table 20 Net Heat Gain, Case3, setup2	43
Table 21 Heat added (after maintaining 25°C inside temperature), Case3, setup_2	43
Table 22 Work done by Air conditioner Case3, setup, 2	44

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वागित केन्रीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Figure 1.1 Showroom and office having glass front	1
Figure 3.1 Glass House Effect	8
Figure 3.2 Thermal resistance	11
Figure 4.1 Wooden beat, Cardboard and Glass	15
Figure 4.2 Development of model for testing	16
Figure 4.3 Data logger and Insolation meter	16
c cc	17
Figure 4.4 Glass, paperboard, foam sheet	17
Figure 4.5 configuration of experimental setup_2 Figure 5.1 Day 1, South facing front (Direct Radiation)	19
	20
Figure 5.2 North facing front (Indirect radiation)	21
Figure 5.3 West facing front	22
Figure 5.4 Inside curtain, Outside curtain	23
Figure 5.5, Case 1, Day_1, Open Box with data logger (Experimental setup_2)	25
Figure 5.6 Case 2, Day_2, Only front face exposed to the surrounding	26
Figure 5.7 Case 3, Day_3, Front face covered	28
Figure 6.1 Day 1, South facing front (Direct Radiation)	28
Figure 6.2 South facing front (Direct Radiation)	29
Figure 6.3 North facing front (Indirect radiation)	
Figure 6.4 North facing front (Indirect radiation)	29
Figure 6.5 West facing front	30
Figure 6.6 West facing front	30
Figure 6.7 Inside curtain, Outside curtain	31
Figure 6.8 Inside curtain and Outside curtain, Test readings graph	31
Figure 6.9 Heat flow direction	32
Figure 6.10 Heat transfer through glass (front face) in Box II	32
Figure 6.11 Heat flow direction	33
Figure 6.12 Heat transfer through paperboard in Box II	33
Figure 6.13 Case 1, Open Box	35
Figure 6.14 Case 2, Day_2, front face open Box	39
Figure 6.15 Completely Covered Box	42
Figure 8.1 Front, Top and Isometric view of feature	47
Figure 8.2 Final Product	48

CERTIFICATE

As per the University Grant Commission (promotion of academic integrity and prevention of plagiarism in the higher institute) regulation 2018 dated 13th July 2018 the thesis "DESIGN FEATURE TO MAKE SHOWROOM (GLASS BUILDINGS) ENERGY EFFICIENT" of Mr. Ravishankar Mishra, student of M. Tech (Machine Design) 4th semester has been checked by URKUND software available at Central Library, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, INDIA. The amount of similarity in the thesis is 0 %. URKUND similarity report is attached with certificate.

Sign of student

RAVISHANKAR MISHRA

Department of Mechanical Engineering

Gurga hasidas Vishwavidyalaya, Bilaspur

Sign of supervisor

Mr. BHUSHAN SINGH GAUTAM

iii

MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS OF FRICTION STIR WELDED ALUMINIUM ALLOY(AI5754)

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY

(Machine design)

Submitted by

KHILESHWAR KUMAR SAHU

Under the supervision of

Prof. Mukesh Kumar Singh

Department of Mechanical Engineering Institute of Technology Guru Ghasidas Vishwavidyalaya (a Central University) Bilaspur (Chhattisgarh), India September 2022

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS

Contents	Page No.
Candidate's declaration	i
Certificate	ii
Certificate By Examiners	iii
Acknowledgement	iv
Abstract	V
Table of Contents	vi
List Of Figures	viii
List Of Tables	X
Nomenclature	xi
CHAPTER 1 INTRODUCTION	1
1.1 Background and Motivation	1
1.2 Research Background and Motivation	7
1.3 Aims and Objective of Research Work	. 10
1.4 Outline of The Thesis	11
CHAPTER2 LITERATURE SURVEY	12
2 literature Review	17
CHAPTER 3 THEORY AND PRINCIPLE	20
3.0 Fundamentals of Friction Stir Spot Welding	20
3.1 Tool Rotation Rate	20
3.2 Tool Transverse Speed	21
3.3 Tool Travel Speed	24
3.4 Tilt Angle	24
3.5 Tool Design	24
3.5.1 Tool Geometry	25
3.6 Heat Generation During (FSSW) Process	30
3.6.1Heat Generation from Surface	31
3.6.2 Heat Generation from Plastic Deformation	32
3.6.3 Total Heat Generation	33
3.6.4 Temperature Measurements	33
	vii

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Figu	re	Page No.
1)	Fig. 1 Schematic Diagram of FSW Process	3
2)	Fig. 2 FSW different types of phases (plunging phase)	4
3)	Fig. 3 FSW different types of phases refilling phase	5
4)	Fig. 3.1 Tool travel displacement	22
5)	Fig.3.2 Tool travel speed	24
6)	Fig. 3.3 FSSW tool geometries:	
	(a) cylindrical pin tools having convex shoulder	26
7)	Fig. 3.4 FSSW tool geometries:	
	(b) cylindrical pin tools having concave shoulder	27
8)	Fig. 3.5 FSSW tool geometries:	
	(c) cylindrical pin tools having flat shoulder	29
9)	Fig. 3.6 FSSW tool geometries FSW process	29
10)	Fig. 3.7 Tool geometry used in this study (all units are in mm)	35
11)	Fig. 3.8 Tool geometry	39
12)	Fig. 3.9 Weld specimen aluminum alloy5754	39
13)	Fig.4.1.1 SEM Analysis	40
14)	Fig.4.1.2 SEM Analysis	41
15)	Fig.4.1.3 SEM Analysis	42
16)	Fig.4.1.4 SEM Analysis	43
17)	Fig.4.1.5 SEM Analysis	44
18)	Fig.4.1.6 SEM Analysis	45
19)	Fig.4.1.7 SEM Analysis	46
20)	Fig.4.1.8 SEM Analysis	47
21)	Fig.4.1.9 SEM Analysis	48
22)	Fig.4.1.10 SEM Analysis	49
23)	Fig.4.1.11 SEM Analysis	50
24)	Fig.4.1.12 SEM Analysis	51
25)	Fig.4.1.13 SEM Analysis	52
26)	Fig.4.2.1 Microstructure Analysis	54

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

This is certified that the thesis entitled "MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS OF FRICTION STIR WELDED ALUMINIUM ALLOY(Al5757)" submitted by Khileshwar Kumar Sahu (Roll no.:20701005) has been carried out under my supervision in partial fulfilment of the requirements for the degree of Master of Technology in Mechanical Engineering (Specialization: Machine Design) during session 2021-2022 of 4th semester has been checked by URKUND software available at Central Library, Guru Ghasidas Vishwavidyalaya(A Central University), Bilaspur, Chhattisgarh, India. The amount of similarity in the thesis is 2%. Signed URKUND similarity report is attached with certificate.

Place: Bilaspun

Date: 7-11-2022

Department of Mechanical Engineering

Guru Ghasidas Vishwavidyalaya, Koni

Bilaspur, Chhattisgarh, India.

Prof. Mukesh Kumar Singh

Professor

विभागाध्यक्ष/Head

यारिकी अभियांत्रिकी विभाग/Mechanical Engg. De प्रोद्योगिकी संस्थान/Institute of Technology गुरु घाराीदास वि.वि./Guru Ghasidas V.V. कोनी, बिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.)

HEATING PATH GENERATION FOR THE DEVELOPMENT OF COMPOUND CURVED SURFACE BY LASER FORMING

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE $\label{eq:degree} \text{DEGREE OF}$

MASTER OF TECHNOLOGY

(Machine Design)

Submitted by

SAURABH MISHRA

Under the supervision of

Dr. BIPLAB DAS

(Assistant Professor)

Department of Mechanical Engineering
School of Studies of Engineering and Technology
Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur,
Chhattisgarh, India
September 2022

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS

CANDIDATE DECLARATION	ii
CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
NOMENCLATURE	ix
LIST OF TABLES	x
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 laser forming processes	3
1.3 Laser Forming Mechanism	4
1.3.1 The Temperature Gradient Mechanism (TGM):	4
1.3.2 The Buckling Shortening Mechanisms (BM):	5
1.3.3 The Shortening Mechanisms:	6
1.4 Types of surfaces	6
1.4.1 Developable Surface:	6
1.4.2 Non-Developable Surface:	7
1.5 Advantages of laser forming process	7
1.6 Disadvantages	7
1.7 Recent Applications	7
CHAPTER 2 LITERATURE SURVEY	8
2.1 Introduction	8
2.2 laser beam heating	8
2.3 temperature field analysis	8
2.4 Thermomechanical analysis	9
2.5 Heating line generation	10
2.6 Generation of compound surfaces	10
2.7 soft computing approach	11
2.8 Summary	12
2.9 Gaps found in literature review	13
2.10 Aims and objectives of the research	13

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Figure 1.1 Temperature Gradient Along Thickness	2
Figure 1.2 Compressive Stress Along Thickness	2
Figure 1.3 Example of Laser Formed Parts [1]	3
Figure 1.4 Laser Forming 800x400x5mm Mild Steel Sheet [1]	3
Figure 1.5 Laser Scanning Scheme[2]	4
Figure 1.6 Schematic of the Three Main Laser Forming Mechanisms	5
Figure 3.1 Outline of process planning for the generation of compound curve surface	15
Figure 3.2 Definition of normal curvature	17
Figure 4.1 Theoretically generated pillow patch	21
Figure 4.2 Theoretically generated twisted patch	22
Figure 4.3 Minimum principal curvature direction for pillow surface	24
Figure 4.4 Maximum principal curvature direction for pillow surface	25
Figure 4.5 Minimum and Maximum principal curvature direction for pillow surface	25
Figure 4.6 Minimum principal curvature direction for twisted surface	26
Figure 4.7 Maximum principal curvature direction for twisted surface	26
Figure 4.8 Minimum and Maximum principal curvature direction for twisted surface	27
Figure 4.9 Pillow shape generated for FE analysis	27
Figure 4.10 Twisted shape generated for FE analysis	28
Figure 4.11 Planar developed shape for pillow surface	31
Figure 4.12 Planar developed shape for twisted surface	31
Figure 4.13 Maximum principal stress distribution for pillow surface	32
Figure 4.14 Minimum principal stress distribution for pillow surface	32
Figure 4.15 Maximum principal strain distribution for pillow surface	33
Figure 4.16 Minimum principal strain distribution for pillow surface	33
Figure 4.17 Maximum principal stress distribution for twisted surface	34
Figure 4.18 Minimum principal stress distribution for twisted surface	34
Figure 4.19 Maximum principal strain distribution for twisted surface	35
Figure 4.20 Minimum principal strain distribution for twisted surface	35
Figure 4.21 Vector principal strain direction for pillow surface	36
Figure 4.22 Vector principal strain direction for twisted surface	36
Figure 4.23 Heating line path for given pillow surface	37
Figure 4.24 Heating line path for given twisted surface	38

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

As per University Grant Commission (promotion of academic integrity and prevention of plagiarism in higher institute) regulation 2018 dated 13th July 2018 the thesis "HEATING PATH GENERATION FOR THE DEVELOPMENT OF COMPOUND CURVED SURFACE BY LASER FORMING" of SAURABH MISHRA, student of M. Tech (Machine Design) 4th semester has been checked by URKUND software available at Central Library, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, INDIA. The amount of similarity in the thesis is 0 %. Signed URKUND similarity report is attached with certificate.

Sign of student

SAURABH MISHRA

Counter Sign

यारिकी अभियांत्रिकी विभाग/Mechanical Engg. Dept Hक्क्ष्यींगिकी संस्थान/Institute of Technology गुरु धार्साराम वि ले GUNHGAPERigneering Benarament of Mechanical PErigneering Guru Ghasidas Vishwavidyalaya, Bilaspur Sign of supervisor

Dr. BIPLAB DAS

N.

ANALYSIS & APPLICATION OF ENERGY HARVESTING SYSTEMS USING PIEZOELECTRIC MATERIALS

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF TECHNOLOGY (Machine Design)

Submitted By

PUSHPENDRA PRATAP SINGH

Department of Mechanical Engineering
School of Studies of Engineering and Technology
Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur,
Chhattisgarh, India
January 2023

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS

CANDIDATE'S DECLARATION	ii
CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	xii
NOMENCLATURE	xiii
1 INTRODUCTION	1
1.1 Background and Motivation	1
1.1.1 Energy Harvesting	1
1.1.2 Piezoelectricity	3
1.2 Aims and objectives of the research	5
1.3 Outline of the thesis	6
2 LITERATURE SURVEY	7
2.1 Energy Harvesting Systems	7
2.1.1 Energy Harvesting Systems using SPICE	7
2.1.2 Energy Harvesting System using MATLAB	7
2.1.3 Energy Harvesting System using CASPOC	8
2.1.4 Energy Harvesting System using Switched Capacitors	8
2.1.5 Miscellaneous	9
2.2 Piezoelectric Polymer	10
2.2.1 Multilayer Piezoelectret	10
2.2.2 Piezoelectret as Energy Harvester	11
2.2.3 Piezoelectrets as Wearables	12
2.2.4 Piezoelectric Foam of Cyclic Olefin Copolymer (COC)	12
2.2.5 Piezoelectrets as Transducers	13
2.3 Literature Gaps	14
3 PRINCIPLES AND THEORIES	15
3.1 Energy Harvesting System (EHS)	15
3.1.1 Operations of EHS	15
3.1.1.1 Accumulation of Energy	16
3.1.1.2 Power Management and Conversion of Energy	16 17
3.1.1.3 Storage of Power	
3.1.2 Energy Harvesting System model using MATLAB	17 19
3.1.3 Modeling of Low-Dropout Regulator (LDO)	20
3.2 Piezoelectricity 3.2.1 Basic Characteristics of Piezoelectric Materials	22
3.2.2 Origin of Piezoelectricity	23
3.2.3 Linear Piezoelectricity and its Model	24
3.2.4 Piezoelectric Materials	26
3.2.4.1 Piezoelectric Crystals	26
3.2.4.2 Piezoelectric Ceramics	26
3.2.4.3 Piezoelectric Composites	27
3.2.4.4 Miscellaneous piezoelectric materials	28

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Table 1. 1: The power densities for various energy sources [1]2
Table 3. 1: The detail description of the symbols in Fig. 3.218
Table 3. 2: Origin of electric dipoles and typical d33 range for different kinds of
piezoelectric materials28
Table 3. 3: Comparison of advantages and disadvantages of different kinds of
piezoelectric materials29
Table 4. 1: Comparison of different topologies based on its output impedance46

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Fig. 1. 1: Energy Scavenging System Block Diagram1
Fig. 1. 2: Hierarchy of main energy harvesting technologies
Fig. 3. 1: Tool flow of the complete energy harvesting model18
Fig. 3. 2: The block diagram of the energy flow in the system
Fig. 3. 3: Simulink block diagram of the capacitor model
Fig. 3. 4: The schematic diagram of a LDO [17]20
Fig. 3. 5: LDO block diagram20
Fig. 3. 6: Piezoelectric effect of Quartz23
Fig. 3. 7: Dipole inside the Piezoelectric Material24
Fig. 3. 8: Different Connectivity patterns of Dipoles
Fig. 3. 9: Overlapping of Dipoles in PVDF
Fig. 3. 10: Dielectric Displacement change of Material [47]31
Fig. 3. 11: Dielectric Discharge of Polymer [47]32
Fig. 3. 12: Basic Structures of COC foam [47]
1 ig. 3. 12. Busic structures of coc found [17]
Fig. 4. 1: Graphical representation of the DC DC converter system partitioning: the
conversion block executes the DC DC conversion and the control block controls the
behavior of the conversion block [18]
Fig. 4. 2: Simplified model for switch capacitor converter loss calculations33
Fig. 4. 3: Block diagram of the switch cap model
Fig. 4. 4: Three stage Dickson charge pump [2]
Fig. 4. 5: The charge flow analysis of the Dickson converter [18]
Fig. 4. 6: The conventional cascaded voltage doubler structure [14]
Fig. 4. 7: Charge flow analysis of two stage voltage doubler (conventional cascaded
structure). (a) Phase 1 (b) Phase 2
Fig. 4. 8: Two stage charge pump circuit with cross connected cells [20]41
Fig. 4. 9: Charge flow analysis of two stage charge pump circuit with cross connected
NMOS cells. (a) Phase 1 (b) Phase 2
Fig. 4. 10: One stage step down series-parallel converter [25]
Fig. 4. 11: Charge flow analysis of the one stage step down series-parallel converter. (a)
Phase 1 (b) Phase 2
Fig. 4. 12: Schematic diagram of a 3-stage Fibonacci Charge pump [26]
Fig. 4. 13: Charge flow analysis of the three stage Fibonacci charge pump
Fig. 4. 14: PWM boost converter and its ideal equivalent circuits for CCM. (a) Circuit
(b) Equivalent circuit when the switch is ON and the diode is OFF. (c) Equivalent
circuit when the switch is OFF and the diode is ON [30]
Fig. 4. 15: Idealized current and voltage waveforms in the PWM boost converter for
CCM [30]
Fig. 4. 16: PWM boost converter and its ideal equivalent circuits for DCM. (a) Circuit
(b) Equivalent circuit when the switch is ON and the diode is OFF (c) Equivalent circuit
when the MOSFET is OFF and the diode is ON. (d) Equivalent circuit when both the
when the most be a second when both the

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

As per University Grant Commission (promotion of academic integrity and prevention of plagiarism in higher institute) regulation 2018 dated 13th July 2018 the thesis "ANALYSIS & APPLICATION OF ENERGY HARVESTING SYSTEMS USING PIEZOELECTRIC MATERIALS" of PUSHPENDRA PRATAP SINGH, student of M. Tech (Machine Design) 4th semester has been checked by URKUND software available at Central Library, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, INDIA. The amount of similarity in the thesis is 11 %. Signed URKUND similarity report is attached with certificate.

Sign of student

PUSHPENDRA PRATAP SINGH

Sign of supervisor

Prof. MUKESH KUMAR SINGH

Counter Sign विभागाध्यक्ष/Head
Heब्रोडिकी अभियातिकी विभाग/Mechanical Engg. Dept प्राद्यागिकी संस्थान/Institute of Technology Department किरोपिकि विकासिक स्थिमिनिक स्थिप कोनी, विज्ञासपर (छ.ग.)/Koni. Bilaspur (C.G.) Guru Ghasidas Vishwavidyalaya, Bilaspur

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

OD WATAIR - WILLIAM

STUDY THE EFFECTS OF BAGASSE POWDER AND WALNUT SHELL POWDER ON FLAX FIBER-REINFORCED COMPOSITE

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY (MACHINE DESIGN)

Submitted by MOHAMMED AARISH AMEEN

Under the supervision of Mrs. SHWETA SINGH (Assistant professor)

Department Of Mechanical Engineering
School Of Studies Of Engineering And Technology

Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, Chhattisgarh, India

September 2022

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENTS

CANDIDATE'S DECLARATIONi
CERTIFICATEii
ACKNOWLEDGEMENTiv
ABSTRACT
TABLE OF CONTENTSv
LIST OF FIGURESvii
LIST OF TABLESx
CHAPTER 1
INTRODUCTION
1.1 Background and research motivation
1.2 Definition of composite
1.3 Need of a composite
1.4 Constituent materials of composite
1.4.1 Reinforcement Fibers
1.4.2 Matrix material
1.4.3 Filler and Other Additives
1.5 Classification of composite
1.6 Natural fiber reinforced composites
1.7 Advantages and disadvantages of Natural Fiber Reinforced Composites
1.8 Applications of Natural Fiber Reinforced Composites
1.9 Flax Fiber
1.10 Bagasse Fiber
1.11 Walnut Shell Powder
1.12 Mechanical Properties of Fibers
1.13 Chemical Properties of Fibers
CHAPTER 2
LITERATURE REVIEW10
2.1 Literature Survey10
2.2 Research gaps
2.3 Objective of the research work
CHAPTER 3
METHODOLOGY21
3.1 Materials used

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2008 क्र. 25 के अंतर्गत स्वापित केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

On VVAI ATT

LIST OF TABLES

Table 1.1 Mechanical properties of fibers	9
Table 1.2 Chemical properties of fibers	9
Table 3.1 Composite samples fabricated	27
Table 4.1 Taxaila proportios of composite samples	38

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्रीय विश्वविद्यालय) कोनी, बिलासपुर – 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Figure 3.16 Sample F2W2B28
Figure 3.17 Universal testing machine (UTM) testing prepared composite sample for
tensile test29
Figure 3.18 Universal testing machine (UTM) testing prepared composite sample for
3-point bending test for flexural strength30
Figure 3.19 Barcol hardness testing of prepared composite specimen31
Figure 3.20 Barcol hardness testing of prepared composite specimen (top view)31
Figure 3.21 Izod impact tester testing a prepared composite sample for Izod impact
test31
Figure 3.22 Prepared composite specimens immersed in water for water absorption
test32
Figure 3.23 Thermo gravimetric Analysis
72
Figure 4.1 Tensile strength of composite samples
Figure 4.2 Percentage increase in tensile strength of composite samples with respect to
F0W0B sample
Figure 4.3 Stress-strain curve of composite F0W0B
Figure 4.4 Stress-strain curve of composite F2W0B
Figure 4.5 Stress-strain curve of composite F0W2B
Figure 4.6 Stress-strain curve of composite F1W1B
Figure 4.7 Stress-strain curve of composite F4W0B37
Figure 4.8 Stress-strain curve of composite F0W4B37
Figure 4.9 Stress-strain curve of composite F2W2B38
Figure 4.10 Flexural strength of the composite sample
Figure 4.11 Percentage increase in flexural strength of the composite samples with
respect to F0W0B sample40
Figure 4.12 Barcol hardness of the composite samples

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Figure 1.1 Composition of composite materials
Figure 1.2 Classification of fibers
Figure 1.3 Classification of composite based on matrix material5
Figure 1.4 Classification of composite based on reinforcing material5
Figure 1.5 (a) Flax plant, (b) Flax fiber
Figure 1.6 (a) Sugarcane plant, (b) Bagasse fiber
Figure 1.7 (a) Walnut shell, (b) Walnut shell powder8
Figure 3.1 Flax fiber mat
Figure 3.2 Bagasse fiber powder
Figure 3.3 (a) Lapox L12 epoxy resin, (b) K-6 hardener
Figure 3.4 Walnut shell powder
Figure 3.5 Hand lay-up technique
Figure 3.6 Mold set up for composite fabrication
Figure 3.7 Mixing Lapox L12 epoxy resin and K6 hardener
Figure 3.8 Filler mixed with epoxy and hardener
Figure 3.9 Composite sample with all layers of flax and epoxy
Figure 3.10 Sample F0W0B
Figure 3.11 Sample F2W0B
Figure 3.12 Sample F0W2B
Figure 3.13 Sample F1W1B
Figure 3.14 Sample F4W0B
Figure 3.15 Sample F0W4B

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

This is to certify that the thesis entitled "Study the effects of bagasse powder and walnut shell powder on flax fiber-reinforced composite" submitted by Mohammed Aarish Ameen (Roll no.: 20701006) has been carried out under my supervision in partial fulfillment of the requirements for the degree of Master of Technology in Machine Design during session 2020-2022 in the Department of Mechanical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, Chhattisgarh, India.

To the best of my knowledge, this work has not been submitted to any other University/Institute for the reward of any degree or diploma.

Signature of the student

MOHAMMED AARISH AMEEN

Signature of the Supervisor

Mrs. SHWETA SINGH

ounter श्रामानाप्यक्ष / Head

ही अभियांत्रिकी विभाग/Mechanical Engg. Dept

प्रियोगिकी संस्थान/Institute of Technology, प्रकृतिस्थितिकी संस्थान/Institute of Technology, प्रकृतिकार्यक्रिकारक्र

जिन्म विलियं दुर (छ.ग.)/Koni, Bilaspur (C.G.) Guru Ghasidas Vishwavidyalaya, Bilaspur

विभागाध्यक्ष / Head

यांचिकी अभियांत्रिकी विभाग/Mechanical Engg. De प्रौद्योगिकी संस्थान / Institute of Technology गुरु घासीदास वि.वि./Guru Ghasidas V.V.

कोनी, बिलासपुर (छ.ग.)/Koni, Bilaspur (C.G.)

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

STUDY THE MECHANICAL PERFORMANCE OF BAGASSE AND WALNUT SHELL POWDER ON COIR FIBER-REINFORCED COMPOSITE

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY (MACHINE DESIGN)

Submitted by **HUPESH PATEL**

Under the supervision of Mrs. SHWETA SINGH (Assistant professor)

Department of Mechanical Engineering
School of Studies of Engineering and Technology

Guru Ghasidas Vishwavidyalaya (A Central University)

Bilaspur, Chhattisgarh, India

September 2022

गुरू घासीदास विश्वविद्यालय (केन्रीय विश्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वापित केन्नीय विश्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

TABLE OF CONTENT

CANDIDATE'S DECLARATION	ii
CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENT	vi
LIST OF FIGURES	viii
LIST OF TABLES	x
CHAPTER-1	1
INTRODUCTION	1
1.1 Introduction	1
1.2 Composite	2
1.3 History of composite	3
1.4 Type of composite	4
1.4.1 Metal matrix composite	4
1.4.2 Ceramic matrix composite	5
1.4.3 Polymer matrix composite	5
1.5 Matrix material	5
1.6 Type of polymer composite	6
1.6.1 Fiber reinforced polymer	6
1.6.2 Particulate reinforced polymer	7
1.7 Natural fiber	7
1.8 Advantage and disadvantage of natural fiber	7
1.8.1 Type of natural fiber	8
1.9 Filler and another additive	9
CHAPTER-2	10
LITERATURE REVIEW	10
2.1 Literature survey	10
CHAPTER-3	14
RESEARCH GAPS	14
3.1 Research Gaps	14
3.2 Objective of research work	14

गुरू घासीदास विश्वविद्यालय (केन्रीय विस्वविद्यालय अधिनयम 2009 क्र. 25 के अंतर्गत स्वामित केन्नीय विस्वविद्यालय) कोनी, बिलासपुर - 495009 (छ.ग.)

Guru Ghasidas Vishwavidyalaya (A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

LIST OF TABLES

Table. 1.1: Fibers and countries of origin	3
Table 4.1: Chemical properties of coir and bagasse fiber	18
Table 4.2: Mechanical properties of coir and bagasse fiber	18
Table 4.3: Chemical composition of walnut shell	19
Table 5.1: Pocult analysis	36

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

Figure 1.1: Basic composite structure	2
Figure 1.2: Classification of composite	4
Figure 1.3: Classification of natural fiber	9
Figure 4.1: Coir or coconut fiber	16
Figure 4.2: Extraction of bagasse	17
Figure 4.3: Bagasse powder	17
Figure 4.4: Walnut shell powder	19
Figure 4.5: Lapox L-12 Epoxy and hardener	20
Figure 4.6: Hand lay-up technique	22
Figure 4.7: Coir fiber composite preparation	23
Figure 4.8: Prepared sample of coir fiber	24
Figure 4.9: Universal testing machine (UTM) testing prepared composite	25
sample for tensile test	
Figure 4.10:3 Point bending test for flexural strength of prepared	26
composite specimen	
Figure 4.11: Izod impact tester testing a prepared composite sample for	27
Izod impact test	
Figure 4.12: Barcol hardness testing machine for hardness test of prepared	28
composite specimen	
Figure 4.13: Thermogravimetric analyser	29
Figure 5.1: Tensile strength graph of composite materials	31
Figure 5.2: Stress-strain graph of C0W0B composite sample	32
Figure 5.3: Stress-strain graph of C1W1B composite sample	32
Figure 5.4: Stress-strain graph of C2W0B composite sample	33
Figure 5.5: Stress-strain graph of COW2B composite sample	33

(A Central University Established by the Central Universities Act 2009 No. 25 of 2009)

Koni, Bilaspur - 495009 (C.G.)

CERTIFICATE

This is to certify that the thesis entitled "Study the mechanical performance of bagasse and walnut shell powder on coir fiber-reinforced composite" submitted by Hupesh Patel (Roll no.: 20701004) has been carried out under my supervision in partial fulfillment of the requirements for the degree of Master of Technology in Machine Design during session 2020-2022 in the Department of Mechanical Engineering, School of Studies of Engineering and Technology, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur, Chhattisgarh, India.

To the best of my knowledge, this work has not been submitted to any other University/Institute for the reward of any degree or diploma.

30|09|2022 Signature of the student

HUPESH PATEL

Signature of the Supervisor

Mrs. SHWETA SINGH

Counter Signature विभागध्यक्ष/Head कि अभियामिक विभाग/Mechanical Engg. Dept. प्राद्यागिकी संस्थान/Institute of Technology गुरु DEBATTIFIER & Machanical Engineering कोनी, बिलोसपुर (छ.गू.)/Koni Blassys (८.८)

प्रितापुर (छ.ग.) /Koni, Bilaspur (C.G.) Guru Ghasidas Vishwavidyalaya, Bilaspur विभागाध्यक्ष/Head याक्कि अभियांत्रिकी विभाग/Mechanical Engg. De प्रोद्योगिकी संस्थान/Institute of Technology गुरु घारादास वि.वि./Guru Ghasidas V.V. कोनी, बिलासप्र (छ.ग.)/Koni, Bilaspur (C.G.)